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Who am I? 
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• Not a theorist!

• Physics & ML Dual PhD - my passion lies at the intersection of both

• I work on:

• Jet tagging with novel ML architectures (CMS) 

• Gravitational-wave detection (LIGO)

• Spiking neural networks (CERN, Intel) 

• Level 1 Trigger system – extreme data reduction (CMS) 

• Dark matter experiment at Fermilab (DarkQuest) 

• Generalized intelligence models - deep metric learning

• Collider concepts - stay tuned! 
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Three-Step Rabbit Hole
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I want to present you with 3 (increasingly complicated) ways* to detect 

anomalies in your experiment:

1. Autoencoder anomaly detection 

2. Quasi-Anomalous Knowledge (QUAK)

3. Latent-Space deep metric learning

*Not all my work - in collaboration with P. Harris (MIT), S.E. Park (MIT), M. Yunis (MIT), D. Rankin (MIT), M. Pierini (CERN)



Intro to Machine Learning 
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Inputs Outputs



Intro to Machine Learning 
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Input - x

Model - f(x)

“Zichichi”

Output - y



Intro to Machine Learning 
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Input - x

Model - f(x)

25% “Zichichi”

Output - y

Weights       at each of these connections encode the network’s knowledge. Weights are 

continually updated using gradient descent    

25% “Dirac”

25% 

“Majorana”
25% “Einstein”



Intro to Machine Learning 
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Input - x

Model - f(x)

63% “Zichichi”

Output - y

8% “Dirac”

13% 

“Majorana”
36% “Einstein”



Intro to Machine Learning 
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Input - x

Model - f(x)

96% “Zichichi”

Output - y

1% “Dirac”

1% “Majorana”

2% “Einstein”



The Autoencoder
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Comparing input and reconstructed 
data gives a model loss



Introduction to the Step 1
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Source: Elena Cuoco - Real Time Classifier for transient signals in Gravitational Waves, From raw data to classified triggers  

Produces: 1-D time-series strain 

• Detection of gravitational waves (GWs) at LIGO  



Unsupervised Learning: Detection
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https://github.com/eric-moreno/LSTM-Autoencoder

Comparing input and reconstructed 
data gives a model loss

Anomaly detection sequence:
1. Train autoencoder to encoder and decode 

data on data with no anomalies. 

2. Compute the highest loss on the training 

dataset – set as threshold for anomalous 

detection

3. Run autoencoder for test data, identify 

events that fall above detection threshold

https://github.com/eric-moreno/LSTM-Autoencoder
https://github.com/eric-moreno/LSTM-Autoencoder
https://github.com/eric-moreno/LSTM-Autoencoder
https://github.com/eric-moreno/LSTM-Autoencoder
https://github.com/eric-moreno/LSTM-Autoencoder


LIGO Dataset
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Source: github.com/timothygebhard/ggwd, https://www.gw-openscience.org/data/

1. Simulates typical detector noise 

conditions from a PSD

2. Simulates GW waveforms for the 

following conditions:

• Binary masses of black hole 

mergers (BBH) or neutron 

star mergers (BNS) 

• SNR of 5-20

• Variable angles in the sky

3. Adds GW strain into noise for 

signal events

4. Data is whitened, bandpass, and 

normalized

https://github.com/timothygebhard/ggwd
https://github.com/timothygebhard/ggwd
https://www.gw-openscience.org/data/
https://www.gw-openscience.org/data/
https://www.gw-openscience.org/data/


Currently used methods
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Source: https://arxiv.org/pdf/1711.03121.pdf, https://arxiv.org/pdf/2005.06534.pdf

, 

Matched Filtering

• Current method used by LIGO 

• Compares incoming GW data to bank of simulated 

waveforms

• Can only identify GWs that are available in GW 

banks (no exotic events)

Deep Filtering

• Convolutional Neural Networks (CNNs) 

• Take time-series inputs, can determine detections 

and estimate parameters of events 

• Still can miss events that aren’t included in training 

set

https://arxiv.org/pdf/1711.03121.pdf
https://arxiv.org/pdf/2005.06534.pdf


LSTM AE 
Architectur
e
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https://github.com/eric-moreno/LSTM-Autoencoder

https://github.com/eric-moreno/LSTM-Autoencoder
https://github.com/eric-moreno/LSTM-Autoencoder
https://github.com/eric-moreno/LSTM-Autoencoder
https://github.com/eric-moreno/LSTM-Autoencoder
https://github.com/eric-moreno/LSTM-Autoencoder
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Event Loss with Autoencoders

• LSTM AE evaluated BBH and BNS 
events yields promising results

• Red dotted line represents 
detection threshold which can 
be determined according to FPR

• During training, AE never 
receives information about any 
GW (signal) -> Source Agnostic

2107.12698

https://arxiv.org/abs/2107.12698
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Supervised vs Unsupervised BBH

• BBH generated from SEOBNRv4 

Approximant

• High mass BH (10–80+ solar masses) 

produce large amplitude events

• Both autoencoders perform better than 

supervised models generalized from BNS 

data

• Outperforms supervised methods (trained 

on equivalent length data) at below FPR = 

0.04

AE can be used for: 

• Triggering on high SNR rare events

• Glitch detection within LIGO apparatus

• Glitches are hard to simulate and 

more easily identifiable with AE
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LIGO Single-Detector BBH Detection

CNN trained w/ BBH (auc = 0.92)

CNN trained w/ BNS (auc = 0.53)

LSTM Autoencoder (auc = 0.73)

GRU Autoencoder (auc = 0.67)

CNN Autoencoder (auc = 0.66)

2107.12698

https://arxiv.org/abs/2107.12698


Introduction to the Step 2

18
Source: CMS Experiment, CERN  

Produces: particle tracks and jet information

• Anomalous events at the LHC (CMS experiment) 



Semi-Supervised Learning 
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Step 

1 

Step 

0 

Step 

2 2011.03550 1909.12285

1908.05318
2107.12698

https://arxiv.org/pdf/2011.03550.pdf
https://arxiv.org/abs/1908.05318
https://arxiv.org/abs/1908.05318
https://arxiv.org/abs/1908.05318
https://arxiv.org/abs/2107.12698


Quasi-Anomalous Knowledge - QUAK
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2011.03550

https://arxiv.org/pdf/2011.03550.pdf


Quasi-Anomalous Knowledge - QUAK
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2011.03550

https://arxiv.org/pdf/2011.03550.pdf


Example: LHC Olympics
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• Signal Dataset: W’ → XY 
• W’ = 3.5 TeV
• X = 500 GeV 
• Y = 100 GeV

• Background Dataset: 1M simulated QCD 
dijet events
• Hidden signal: 900-event W’ resonance
• W’ = 3.8 TeV
• X = 732 GeV
• Y = 378 GeV

2011.03550

https://arxiv.org/pdf/2011.03550.pdf


LHC Olympics – Method 1 
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2011.03550

Method 1: Iteratively vary a selection on the signal loss and background loss and select regions of low signal loss and 

high background loss. Biased analysis method!

https://arxiv.org/pdf/2011.03550.pdf


LHC Olympics – Method 2 
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2011.03550

Method 2: Separate the events by the black shaded boxes shown corresponding roughly to a uniform populations of 

events within each shaded region

https://arxiv.org/pdf/2011.03550.pdf


QUAK Anomaly Detection
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2011.03550

QUAK allows generalization 

capability beyond supervised 

algorithms! Can search for 

events that are similar but not 

the same as a hypothetical 

signal. 

https://arxiv.org/pdf/2011.03550.pdf


Introduction to the Step 3
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Remember how I showed you this slide…



The Autoencoder 
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What’s happening here? 



Introduction to the Step 3
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• The autoencoder is constructing a latent space according to some 

distance metric it has designed. 

• What if we take over this metric? We can make the most out of 

metric space properties of collider events.

• Distance metrics include: 

• Euclidean 

• Hyperbolic

• Energy Movers Distance – For HEP

• Power spectral distance? – For LIGO 

• Appropriate metrics can be tailored to the domain! 



Does it work? 
Idea from Sangeon Park et. al

Hyperbolic spaces: Better for handling graph / tree structured data, biological sequences 

Euclidean spaces: Most common choice, easy to calculate volume

1804.03329

https://arxiv.org/abs/1804.03329


Embedding results – new latent space! 
Idea from Sangeon Park et. al
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What is it learning?  
Idea from Sangeon Park et. al
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Application – searching algorithmic coverage
Idea from Sangeon Park et. al
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Application – searching algorithmic coverage
Idea from Sangeon Park et. al
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Application – searching algorithmic coverage
Idea from Sangeon Park et. al
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Application – few shot learning
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Embedded

One/few shot learning

State of the art: Large language models like 

GPT3 (175 Billion parameter AE model) learn 

using few-shot learning on their latent spaces  

2005.14165

Classification

https://arxiv.org/abs/2005.14165


Conclusion
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We fell down the rabbit hole and learned that:

1. Anomaly detection is an unsupervised learning tool that can detect 

exotic events in a variety of different settings

2. The QUAK-space furthers these concepts, allowing for more complex 

selections and analysis 

3. The holy grail of anomaly detection (in my opinion) lies in embedded 

latent spaces that contain useful physics metrics. This can be used to 

test the coverage space of different analyses, design analyses that 

cover a new phase space, or perform a classification!



Thank you for your attention!

Questions?



The Autoencoder
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• Encoders and decoders made of:
• Dense Neural Networks (DNN)
• Convolutional layers (CNN)
• Recurrent Neural Networks (RNNs) such as 

LSTMs or GRUs which are good with dealing 
with time-dependent data

• Spiking Neural Networks (interesting 
proposition!) 
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Exploiting Dual-Detector 
Coincidence
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LIGO Dual-Detector BBH Detection

CNN trained w/ BBH (auc = 0.96)

CNN trained w/ BNS (auc = 0.57)

LSTM Autoencoder (auc = 0.79)

GRU Autoencoder (auc = 0.73)

CNN Autoencoder (auc = 0.72)

2107.12698

https://arxiv.org/abs/2107.12698


QUAK Anomaly Detection
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M. Yunis, Thesis 2022

Bump Hunt Region

4.3 excess 

at 2500 GeV! 



Giving structure to physics events

41

Optimal transport based metric : Move one event to 

another by moving energy around 

Energy Mover’s Distance (Komiske, Metodiev, Thaler, 

2019) : 

By embedding, we can do a lot of things! Mapping  

complicated metrics to simpler metrics can give access to 

powerful algorithmic toolkits, data compression

Idea from Sangeon Park et. al

1902.02346

https://arxiv.org/abs/1902.02346


Variational Autoencoder (VAE)
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VAE vs Normalizing Flow
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µstralia, Mustralia
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• µ+µ- collider is necessary to efficiently explore higher energies! 

• Very hard to make a muon beam – would require protons on a target, resulting 

on pions which decay to muons and need to be refocused and sent down a 

accelerator/collider – likely circular. 



Radioactive Kangaroos/Emus
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https://accelconf.web.cern.ch/p99/PAPERS/THP52.PDF

Nonnegligible 
radiation from 
muons in soil

https://accelconf.web.cern.ch/p99/PAPERS/THP52.PDF

