

ANTINUCLEI FROM THE LABORATORY TO THE COSMOS: GETTING READY FOR THE LHC RUN 3

erc

Malfattore G.¹ on behalf of the ALICE Collaboration ¹ University of Bologna and INFN Bologna, Italy

A significant number of **cosmological and astrophysical** evidences suggestes the existence of dark matter (DM), its existence and nature have not been proven yet.

One possible strategy: search for products of DM **annihilation** in cosmic rays with space-based experiments (AMS^[1], GAPS^[1]).

Light **antinuclei** (\overline{d} , ${}^{3}\overline{He}$) are considered promising detection channels for dark matter due to the expected low background from ordinary cosmic ray interactions with interstellar medium^[2].

INFN

(ANTI)NUCLEI FORMATION BY COALESCENCE

LHC IS AN ANTINUCLEUS FACTORY

ALICE UPGRADED FOR RUN 3

Also new **Integrated Online-Offline system** (0²) to perform Run 3 (and 4) events reconstruction

LHC Run 3 target integrated luminosity = **13 nb⁻¹** (Pb-Pb) with interaction rates ~ **50 kHz 200 nb⁻¹** (pp) with interaction rates ~ **1 MHz**

PERFORMANCE WITH FIRST RUN 3 PP COLLISIONS AT $\sqrt{s} = 900$ GeV

Excellent separation of different particle species at low $p_{\rm T}$

Excellent **separation** of different particle species at **intermediate** *p*_T

 p_{\pm} (GeV/c)

HOW TO MEAUSURE (ANTI)NUCLEI IN ALICE

1. Tracking and identification

Pre-selection via TPC energy loss ($5\sigma_{TPC}$)

2. Corrections

Brand new 7 layer pixel detector

performance **at low** *p*_T

Less material budget, improved tracking

• New GEM-based readout pads

• PID via dE/dx in the TPC gas

Time Of Flight detector (TOF)

• PID via time-of-flight measurements

Allows continous readout

Time **P**rojection **C**hamber (**TPC**)

Correction for secondary nuclei from material based on fits to the distance of closest approach to the primary vertex

Correction for **efficiency x acceptance**

3. Determination of yield and B_A

Fit to the $p_{\rm T}$ spectrum to extract per-event $p_{\rm T}$ integrated **yield dN/dy** in the unmeasured region

Repeat the analysis to measure proton spectrum and extract **B**_A

B₃ measurements with Run 3: more differential in multiplicity and $p_{\rm T}$ improved statistical precision

REFERENCES:

[1]: P. von Doetinchem *et al.*, JCAP **08**, 035 (2020) [2]: M. Korsmeier *et al.*, Phys. Rev. D97 no. 10, (2018) 103011 [3]: J.I. Kapusta, Phys. Rev. C 21, 1301 (1980) [4]: F. Bellini *and* A. P. Kalweit, Phys. Rev. C 99 no. 5, (2019) 054905 **[5]**: F. Bellini *et al.*, Phys. Rev. C **103**, (2021) 014907 [6]: S. Acharya *et al.* [ALICE], Phys. Lett. B 800, 135043 (2020) [7]: S. Acharya *et al.* [ALICE], JHEP **01**, 106 (2022)

