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Modifying gravity: why?

A discovery of the accelerated expansion of the present
Universe: the cosmological constant does the job but implies strong
fine-tuning.

Inflation in the early Universe: numerous inflationary models rely on
a scalar field, which in some cases is non-minimally coupled.

Academic interest: our attempts to modify gravity give us deeper
understanding of GR.
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Modifying gravity: how?

There are many specific ways of modifying GR −→ the idea is to add
extra degrees of freedom (DOF)

One of the simplest options: add a scalar field

Sg+ϕ =

∫
d4x
√
−g
[
R +

1
2
(∇µϕ)2 − V (ϕ)

]
Non-minimal coupling f (ϕ) does the job:

Sg+ϕ =

∫
d4x
√
−g
[
f (ϕ)R +

1
2
(∇µϕ)2 − V (ϕ)

]
Non-minimal coupling f (ϕ,X ) which involves the kinetic term
(X = gµν∇µϕ∇νϕ):

Sg+ϕ =

∫
d4x
√
−g
[
f (ϕ,X )R +

1
2
X − V (ϕ)

]
How far can we go with this kind of modifications?
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Potential problems

By adding higher derivative terms into Lagrangian one risks invoking the
Ostrograsky instability:

e.g. the action

Sg+ϕ =

∫
d4x
√
−g [f (ϕ,X )R + X − V (ϕ)]

gives the 3rd order differential equations of motion, which naively signals
that there are extra ghost-like DOFs .

There exist a wide class of healthy scalar-tensor theories (STT) with 2nd
derivatives: Horndeski theories and their generalisations.

Horndeski (1974)
Deffayet, Deser, Esposito-Farese (2009)

Gleyzes, Langlois, Piazza, Vernizzi (2015)

The most general class today - Degenerate Higher Order Scalar-Tensor
theories or DHOST).

Ben Achour, Langlois, Noui (2016)
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Horndeski theories

General form of the Lagrangian

S =

∫
d4x
√
−g (L2 + L3 + L4 + L5) ,

L2 = F (ϕ,X ),

L3 = K (ϕ,X )�ϕ,

L4 = −G4(ϕ,X )R + 2G4X (ϕ,X )
[
(�ϕ)2 − ϕ;µνϕ

;µν
]
,

L5 = G5(ϕ,X )Gµνϕ;µν +
1
3
G5X

[
(�ϕ)3 − 3�ϕϕ;µνϕ

;µν + 2ϕ;µνϕ
;µρϕ ν

;ρ

]
,

ϕ;µν = OνOµϕ, �ϕ = gµνOνOµϕ, X = gµνϕ;µϕ;ν , GiX = ∂Gi/∂X .

Equations of motion (EOM) are the 2nd order (no Ostrogradsky ghost).

Generalizations of Horndeski: add more functions into Lagrangian +
constraints.

Some extensions of Horndeski theories give rise to the 3rd order EOMs.
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Applications of Horndeski theories in cosmology

Dark Energy modelling
Modelling inflation

Non-standard cosmological models without the initial singularity aka
Big Bang:

a Universe with a bounce

a Universe starting off with Genesis
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Applications of Horndeski theories

Non-standard cosmological models:
a Universe with a bounce
a Universe starting off with Genesis

Both scenarios require violation of the Null Energy Condition (NEC):

For a homogeneous stationary fluid: p + ρ > 0

because NEC ensures that the Hubble parameter never grows

Ḣ = −4πG (p + ρ) < 0

and the energy density in standard cosmologies always decreases
dρ

dt
= −3H(ρ+ p) < 0.

Another subtlety: stability of these solutions at the perturbative level.
Cai, Piao (2017)

Kolevatov, Mironov, Sukhov, VV (2017)

Mironov, Rubakov, VV (2019)

Further development: adding other matter components (extra matter
considerably affects stability).
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Ḣ = −4πG (p + ρ) < 0

and the energy density in standard cosmologies always decreases
dρ

dt
= −3H(ρ+ p) < 0.

Another subtlety: stability of these solutions at the perturbative level.
Cai, Piao (2017)

Kolevatov, Mironov, Sukhov, VV (2017)

Mironov, Rubakov, VV (2019)

Further development: adding other matter components (extra matter
considerably affects stability).

21/06/2022 7 / 10



Applications of Horndeski theories: gravitational objects

Black holes (a well developed topic)

Wormholes (our current project)

Traversable wormholes require an exotic matter to support its throat
Stability at the perturbed level is an issue (much more involved than in
the cosmological setting)
A completely stable solution still does not exist (the work is in process)

Mironov, Rubakov, VV (2018)
Franciolini, Hui, Penco, Santoni, Trincherini (2018)

Bakopoulos, Charmousis, Kanti (2021)
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Conclusion

Scalar-tensor theories of modified gravity are widely used in cosmology
and usually belong to Horndeski class of theories.
Horndeski theories and their extensions enable one to construct viable
non-singular cosmological scenarios - bouncing Universe and Universe
with Genesis.
(Beyond) Horndeski theories may potentially support a traversable
wormhole.

Thank you for your attention!
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Cubic Horndeski theory
L3 = K (π,X )�π

δL = Kπ�πδπ + KX�πδX + K�δπ =

= ...+ KX�π δ(∂µπ∂
µπ) + K∂µ∂

µδπ

= ...+ 2KX�π∂µπ∂
µδπ + ∂µ∂

µKδπ

= ...− 2KX (∂
µ�π)∂µπδπ + ∂µ(Kπ∂

µπ + 2KX∂
µ∂νπ∂

νπ)δπ

...− 2KX∂
µ∂ν∂

νπ∂µπδπ + 2KX∂µ∂
µ∂νπ∂

νπδπ

= ...terms with the 2nd derivative at most
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