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Modifying gravity: why?

o A discovery of the accelerated expansion of the present
Universe: the cosmological constant does the job but implies strong
fine-tuning.
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Modifying gravity: why?

o A discovery of the accelerated expansion of the present
Universe: the cosmological constant does the job but implies strong
fine-tuning.

o Inflation in the early Universe: numerous inflationary models rely on
a scalar field, which in some cases is non-minimally coupled.

o Academic interest: our attempts to modify gravity give us deeper
understanding of GR.
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Modifying gravity: how?

o There are many specific ways of modifying GR — the idea is to add
extra degrees of freedom (DOF)
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Modifying gravity: how?

o There are many specific ways of modifying GR — the idea is to add
extra degrees of freedom (DOF)
o One of the simplest options: add a scalar field

1
Savo = [ a/=E R4 3 (V0 - V(o)
Non-minimal coupling f(¢) does the job:
1
Sevo = [ xR [FAR 5 (Ve - V(o)

Non-minimal coupling (¢, X) which involves the kinetic term
(X = g"VupVip):

Se+o = /d4X\/—_g {f(%X)RJr %X - V(@)]

o How far can we go with this kind of modifications?



Potential problems

o By adding higher derivative terms into Lagrangian one risks invoking the
Ostrograsky instability:
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o By adding higher derivative terms into Lagrangian one risks invoking the
Ostrograsky instability:

e.g. the action
Sgte = /d“X\/—g[f(so, X)R+ X = V()]

gives the 3rd order differential equations of motion, which naively signals
that there are extra ghost-like DOFs .
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Potential problems

o By adding higher derivative terms into Lagrangian one risks invoking the
Ostrograsky instability:

e.g. the action
St = /d“X\/—g[f(so, X)R+ X = V()]

gives the 3rd order differential equations of motion, which naively signals
that there are extra ghost-like DOFs .

o There exist a wide class of healthy scalar-tensor theories (STT) with 2nd
derivatives: Horndeski theories and their generalisations.
Horndeski (1974)
Deffayet, Deser, Esposito-Farese (2009)

Gleyzes, Langlois, Piazza, Vernizzi (2015)

@ The most general class today - Degenerate Higher Order Scalar-Tensor
theories or DHOST).

Ben Achour, Langlois, Noui (2016)

21/06/2022 4/10



Horndeski theories

General form of the Lagrangian

S= /d4X\/—g(£2+£3+£4+£5),

Lo = F(p, X),
L3 = K(p, X)Op,
L4 = —Galp, X)R + 2Gax(, X) [ (O0) = wu0™|

1 . .
Ls = Gs(p, X)G" 0, + 3 Osx [(D¢)3 = 3000 e™ + 20,90, |,

O = VoV, Op = g v, Ve, X = g .0., Gix = 0G;/0X.
o Equations of motion (EOM) are the 2nd order (no Ostrogradsky ghost).
o Generalizations of Horndeski: add more functions into Lagrangian +

constraints.

@ Some extensions of Horndeski theories give rise to the 3rd order EOMs.



Applications of Horndeski theories in cosmology

o Dark Energy modelling
o Modelling inflation
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Applications of Horndeski theories in cosmology

o Non-standard cosmological models without the initial singularity aka
Big Bang:

o a Universe with a bounce
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Applications of Horndeski theories

Non-standard cosmological models:
o a Universe with a bounce
o a Universe starting off with Genesis

o Both scenarios require violation of the Null Energy Condition (NEC):
For a homogeneous stationary fluid: p+p>0
because NEC ensures that the Hubble parameter never grows
H=—47G(p+p) <0
and the energy density in standard cosmologies always decreases
dp

= —3H
5 = 3H(p+p) <0.
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o Another subtlety: stability of these solutions at the perturbative level.
Cai, Piao (2017)
Kolevatov, Mironov, Sukhov, VV (2017)

Mironov, Rubakov, VV (2019)
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o Another subtlety: stability of these solutions at the perturbative level.
Cai, Piao (2017)
Kolevatov, Mironov, Sukhov, VV (2017)

Mironov, Rubakov, VV (2019)
o Further development: adding other matter components (extra matter
considerably affects stability).
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Applications of Horndeski theories: gravitational objects

o Black holes (a well developed topic)
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Applications of Horndeski theories: gravitational objects

o Black holes (a well developed topic)

o Wormbholes (our current project)

o Traversable wormholes require an exotic matter to support its throat

o Stability at the perturbed level is an issue (much more involved than in
the cosmological setting)

o A completely stable solution still does not exist (the work is in process)

Mironov, Rubakov, VV (2018)
Franciolini, Hui, Penco, Santoni, Trincherini (2018)

Bakopoulos, Charmousis, Kanti (2021)
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Conclusion

o Scalar-tensor theories of modified gravity are widely used in cosmology
and usually belong to Horndeski class of theories.

o Horndeski theories and their extensions enable one to construct viable
non-singular cosmological scenarios - bouncing Universe and Universe
with Genesis.

o (Beyond) Horndeski theories may potentially support a traversable
wormhole.
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o Scalar-tensor theories of modified gravity are widely used in cosmology
and usually belong to Horndeski class of theories.

o Horndeski theories and their extensions enable one to construct viable
non-singular cosmological scenarios - bouncing Universe and Universe
with Genesis.

o (Beyond) Horndeski theories may potentially support a traversable
wormhole.

Thank you for your attention!
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Cubic Horndeski theory

L3 = K(m, X)On

0L = KrOmém + KxOmé X + KO =
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Cubic Horndeski theory

L3 = K(m, X)On

0L = KrOmém + KxOmé X + KO =

= ...+ KxOn 6(0,m0"7) + K0,0"om

= ... + 2KxOno, ot om + 0,0"Kém

= ... = 2Kx(0"0Om)0,mom + Ou( Kz 0w + 2Kx 0" 0, 0" w)dm
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Cubic Horndeski theory

L3 = K(m, X)On

0L = KrOmém + KxOmé X + KO =

= ...+ KxOn 6(0,m0"7) + K0,0"om

= ...+ 2KxOno,m0"om + 0,0" Ko

= ... = 2Kx(0"0Om)0,mdm + 0, ( Kz 0" + 2Kx 0" 0, w0 m)om

... —2Kx0"0,0" 0, o + 2Kx0,0"0, m0" 1w
= ...terms with the 2nd derivative at most
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