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INTRODUCTION

SOME HISTORY OF THE THREE-BODY PROBLEM

e Until end of 18th century, it was still unclear if Newton’s law could
explain the orbits of Solar System

e Lagrange and Laplace inaugurated methods of celestial mechanics
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INTRODUCTION

A SMALL CLOUD IN A BLUE SKY

e Careful analysis showed supplementary precession for Mercury...

Amount ("cy ™) Cause
531.63 + 0.69 gravitational tugs from the other planets
0.025 4 oblateness of the Sun
42.98 +£0.04 general relativity
574.64 + 0.69 total

574.10 + 0.65 observed



GRAVITATIONAL WAVES

A BIG JUMP IN HISTORY

Detection of GW so far beautifully corresponds to two-body systems
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GRAVITATIONAL WAVES

A BIG JUMP IN HISTORY

Detection of GW so far beautifully corresponds to two-body systems
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If we ever detect a new feature in data, we have (as 19th century astronomers)
two possible explanations:

e Modification of GR

e Perturbation by a third body (this talk)
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GRAVITATIONAL WAVES

THIS QUESTION IS NOT PURELY ACADEMIC !

Three-body systems are also quite common !

e 90% of low-mass binaries are expect to belong to a ‘hierarchical’ triple system
Tokovinin et al. 2006

e ‘Migration traps’ around SMBH at R ~ 20 — 600 R¢.1,
Bellovary et al. 2015 y
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THIS QUESTION IS NOT PURELY ACADEMIC !

Three-body systems are also quite common !

e 90% of low-mass binaries are expect to belong to a ‘hierarchical’ triple system
Tokovinin et al. 2006

e ‘Migration traps’ around SMBH at R ~ 20 — 600 R,
Bellovary et al. 2015 y

Can we detect and measure parameters of the third body from waveform ?

— As Lagrange and Laplace, we have to formulate the 3-
body problem in GR and solve it perturbatively
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RELATIVISTIC THREE-BODY PROBLEM
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A COMMON MISCONCEPTION

H3_vody = Hio2 + Hioss + Hoos

H2<—>3
”H1<—/

>0
@ —
H1<—>3
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T Phe sbody — Hic2 + Hios , H5es3

A COMMON MISCONCEPTION

GR IS A NONLINEAR THEORY !

Juv # g(l) g( ) (would not solve Rm/ =0)
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GR CORRECTIONS AT 1PN

EOM in post-Newtonian
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- 2vb + 5 (vb ’ nab) - 2 2 E r E 3 + 2 E 3 Xab <4va - 3vb)(va - vb)~ (31)
¢ b#a 'ab c#ab Pbe ¢ b#a Fab
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GR CORRECTIONS AT 1PN

EOM in post-Newtonian

Gmpx,, |1 Gmpx,, | Gm, Gm, Gm, Gm, 1 Gm, R
a, = _Z i I +_Z i I [4 l +5 + Z +4Z __Z 3 (xah'xh(')_ Vq +4va'vb

5
b#a Fab ¢ b#a Fab Fab Fab c#a,b Tbe c#a,b Fac . c#a,b Pbe
3 7 Gm Gm.x 1 Gm
2 ~ 2 b c*be b
_ 2vb + 5 (V/, ’ nab) - 7 2 E E 3 + 2 E 3 Xab * (4vc1 - 3vb)(vu _ V/,). (31)
¢ b#a Fab c#a.b be ¢ b+#a Fab

e Lack of physical intuition

e Numerical evolution over long timescales difficult

e Issues in the radiative sector
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3-body motion = 2-body with spin!

3
1
3full — Z — mA\/—gq"ff"X @ gEFT - = %\/—&quMVéM + EJMDQW _ m3\/—gﬂy\/§4v3”
A=1
PROPER TIME

The equivalence principle fixes nearly everything!
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. A SYSTEMATIC EXPANSION

- AK, F. Serra, E. Trincherini 2021

1
Lgpr = — %\/ _gﬂUVgMVéM + EJ,MUQMD a m3\/ —&w"ﬁ‘ vy

As in any EFT, the Lagrangian is organised with power-counting rules:

a

and £ =
as
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a
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To get the EOM for the point-particles, one should ‘integrate out’ the gravitational field
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2m  a3(1 — e3)3/2

T Hquad »7 Quadrupolar Coupling 20 4 £2,2



APPLICATION #1

LONG-TERM EVOLUTION OF RELATIVISTIC 3-BODY SYSTEMS

7-[ — Hinner _I_ Houter _|_ H€3/2’02 _I_ Hszfvo _I_ H€2v2 _I_ ° ..

0PN 1PN
190 —— M M
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J T T 1M
L T

10—4,

0.5 1 1.5 0.5 1 1.5
Time [Myr]

AK, F. Serra, E. Trincherini (In prep.)
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APPLICATION #2
RELATIVISTIC DOPPLER EFFECT IN WAVEFORMS

o Longitudinal Doppler effect: Randall Xianyu ‘18 Inayoshietal. ‘17 Strokovetal. ’17...
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e Transverse Doppler effect: break degeneracies
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APPLICATION #2
RELATIVISTIC DOPPLER EFFECT IN WAVEFORMS

e Longitudinal Doppler effect: Randall Xianyu ‘18  Inayoshi etal. 17 Strokov etal.’17..
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e Transverse Doppler effect: break degeneracies

/2
fr — fs \/1 4 AK, K. Leyde (In prep.)
1+V)

e Higher order effects in waveforms like spin-orbit coupling...
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APPLICATION #3
NEW RESONANCES

e Resonances are a fascinating phenomenon of the 3-body problem

GANYMEDE 4:1

EUROPA 2:1
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o @ JUPITER
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APPLICATION #3
NEW RESONANCES

e Resonances are a fascinating phenomenon of the 3-body problem

GANYMEDE 4:1

EUROPA 2:1
1O 1:1

o @ JUPITER

e When relativistic effects are included, there are other kinds of resonances

Perihelion angle Outer orbit frequency

O \ p}wq 0_1;4:0

as

AK 2021 33 p? q E Z



APPLICATION #3
NEW RESONANCES

N VZ
a(t) = ag (1 — —)
tRR

10°

AK 2021



CONCLUSIONS

e Very rich phenomenology in the Newtonian 3-body problem,
even more in the relativistic one...

e EFT formulation suited to precision computations

e Future work: more precise waveforms for 3-body problem
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