

High-energy particle interactions in blazar jets

Anastasiia Omeliukh

Astronomical Institute, Faculty of Physics and Astronomy Ruhr University Bochum, Germany

International School of Subnuclear Physics, 58th Course, 15 - 24 June 2022

Introduction

Introduction	Blazars	Our current understanding of blazar emission
000		

Modeling particle	interactions	in jets

110-years-old riddle

Particles with highest ever observed energies were detected in cosmic rays.

- $\diamond~$ Where these particles come from?
- $\diamond~$ How are they accelerated?
- ◊ Composition, properties, search for new physics?

Victor Hess

Introduction	Blazars	Our current understanding of blazar emission	Modeling particle interactions in jets	Final remark
000				

2013: Neutrinos from space

Observation of astrophysical neutrinos with 6 years of IceCube data

Astrophysical neutrinos were discovered in 2016 with the IceCube Neutrino Observatory. As for now, more than 100 high-energy cosmic neutrinos with energies between 100 TeV and 10 PeV were detected by IceCube.

- ◊ What are neutrino sources?
- $\diamond~$ How high-energy neutrinos are produces?
- What information do they carry about physical processes in the source?

Blazars

Introduction	Blazars	Our current understanding of blazar emission	Modeling particle interactions in jets	Final remarks
	0000			

Extremely powerful sources

- Powered by the central engine, supermassive black hole, active galactic nuclei (AGNs) outshine the host galaxy
- Some of AGNs launch relativistic jets
- AGN pointing towards Earth (blazar) \rightarrow efficient Lorentz boosting

Introduction	Blazars	Our current understanding of blazar emission	Modeling particle interactions in jets	Final remarks
	0000			

Spectral energy distribution: similarities in blazars

Blazars as neutrino sources

By now, there are three known blazars that are neutrino sources:

♦ TXS 0506+056

2017: IceCube-170922A, 290 TeV; 2014-2015: 13 \pm 5 more event from IceCube, 10-20 TeV, 3.5 σ atmospheric background excess

◇ PKS 1502+102

2019: IceCube-190730A, 300 TeV

♦ PKS 0735+178

2021: IceCube-211208A, 172 TeV 3.5 hours after IceCube event: Baikal-GVD, 43 TeV

4 days before IceCube event: Baksan Underground Scintillation Telescope, \sim 10 GeV

Our current understanding of blazar emission

troduction	

Modeling particle	interactions	in jets

Radiation zone

Blazars

Introduction	Blazars	Our current understanding of blazar emission	Modeling particle interactions in jets	Final remarks
		000000		

Introduction	Blazars	Our current understanding of blazar emission	Modeling particle interactions in jets	Final remarks
		000000		

Introduction	Blazars	Our current understanding of blazar emission	Modeling particle interactions in jets	Final remarks
		000000		

Introduction Blazars	Our current understanding of blazar emission	Modeling particle interactions in jets	Final remarks
	000000		

Modeling particle interactions in jets

Introduction	Blazars	Our current understanding of blazar emission	Modeling particle interactions in jets	Final remark
			0000000	

Introduction	Blazars	Our current understanding of blazar emission	Modeling particle interactions in jets	Final rem
000	0000	000000	0000000	0000

Introduction	Blazars	Our current understanding of blazar emission	Modeling particle interactions in jets	Final rer
			0000000	

Introduction	Blazars	Our current understanding of blazar emission	Modeling particle interactions in jets
			0000000

Introduction	Blazars	Our current understanding of blazar emission	Modeling particle interactions in jets	Final
			00000000	

$\gamma\text{-ray}$ flare of blazar VER J0521+211

Preliminary

MAGIC Collaboration + AO, Xavier Rodrigues, Anna Franckowiak (in preparation)

- ◊ TeV photons observed in February 2020 by MAGIC telescope
- simultaneously, mutli-wavelength data
 was collected in different bands
- gamma-rays produced in hadronic interaction in one radiation zone can explain the origin of this extreme activity

Introduction	Blazars	Our current understanding of blazar emission
000	0000	000000

Modeling particle	interactions	in	jets	
0000000				

Final remarks

PKS 0735+178

Final remarks

Introduction	Blazars	Our current understanding of blazar emission	Modeling particle interactions in jets	Final remarks
				0000

Conclusions

- ♦ Blazars are powerful sources of EM radiation and neutrinos
- In most of the cases, radiation may be explained by particle interactions in a small region inside the jet
- Numerical modeling of radiation process in blazar jets helps us to explain the observed multi-messenger data

Introduction	Blazars	Our current understanding of blazar emission	Modeling particle interactions in jets	Final remarks
				0000

Outlook

- ◊ The exact mechanism of particle acceleration in near supermassive black holes as well as jet formation in general remain interesting open questions
- With the development of new instruments and better quality of data, astrophysical sources can become a new setup for testing fundamental physics at higher energies

Introduction	Blazars	Our current understanding of blazar emission	Modeling particle interactions in jets	Final remark
				0000

Thank you for your attention!