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• QW	approach	to	parton showers

• Conclusions

2K.	Bepari,	(Durham	University)



Introduction	to	Quantum	Computing
• Bit	:

• Fundamental	component	of	Classical	Computation	and	Information
• Takes	values	0	or	1

• Qubit:	

• Two	possible	states	|0⟩ = 1
0 and	|1⟩ = 0

1 =>	|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩
• Specific	parameterisation:

• |𝜓⟩ = cos -
.
|0⟩ + 𝑒01 sin -

.
|1⟩

• polarisations	of	photon,	alignment	of	nuclear	spin	in	magnetic	field,	two	states	of	electron	orbiting	
single	atom

• N	qubits	– 2N dim	Hilbert	space
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QC

AQC	
Adiabatic	Quantum	

ComputationCircuit	Model

MBQC	
Measurement	Based	
Quantum	Computation

Sampling	models

Boson	Sampling

• Initialise wavefunction
• Act	with	gates	on	states	ó

unitary	operations	in	Hilbert	
space	- reversible

• Measure	wavefunction

𝐻 𝑠 = 1 − 𝑠 𝐻7 + 𝑠𝐻8,	
𝑠 ∈ 0,1

- irreversible - Useful	to	demonstrate	
computational	advantage	over	
classical

Quantum	
Anealing
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• Optimization	problems
• Number	partitioning	problem	
• Given	a	set	S	of	positive	integers	

{n1,	n2,	.	.	.	,	nN }	of	length	N,	
can	this	set	be	partitioned	into	
two	sets	S1	and	S2	such	that	the	
sum	of	the	sets	are	equal?	



Quantum	Gates

Single-qubit	gates

NOT-gate	(Pauli	X	gate)

Hadamard gate

S gate

	Χ

	𝐻

	𝑆

= 0 1
1 0

=
1
2�
1 1
1 −1

= 1 0
0 𝑖

Multi-qubit	gates

CNOT	gate TOFFOLI	gate

Can	have	universal	sets	e.g.	{CNOT,	H,	T	}

Solovay-Kitaev Th.	Let	G	a	finite	subset	of	SU(2)	and	U	∈ SU(2).	If	the	
group	generated	by	G	is	dense	in	SU(2),	then	for	any	ε it	is	possible	to	
approximate	U	to	precision	ε using	O( ︎log4(1/ε)) ︎ gates	from	G.	

[Nielson	Chuang.]
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Intro	to	QW 𝑥 = 0 𝑥 = 1 𝑥 = 2𝑥 = −1𝑥 = −2
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Quantum	walks	 (QW)	are	the	quantum	analog of	the	classical	random	walks

• using	aspects	of	QM	such	as		interference	and	superposition.

studied	in	two	forms:	Continuous-time	(CT)	QW	and	Discrete-Time	(DT)	QWs.

• various	applications	and	studies	e.g.	in	demonstrating	exponential	speedup	over	classical	computation	for	a	hitting	time	problem	on	a	glued	
tree,	quantum	algorithms	like	the	element	distinctness	problem	,	for	like	triangle	finding	etc.	and	also	been	employed	to	understand	physical	
systems	from	phase	transitions	to	modelling	photosynthetic	systems	

Continuous-time:	directly	encode	the	walk	in	the	position	Hilbert	space,	ℋC

Discrete-time:		necessary	to	introduce	additional	coin	Hilbert	space	to	determine	direction	in	which	particle	
evolves	in	position	space.	Total	Hilbert	space	given	by:	ℋ = ℋD ⊗ℋC
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CT	QW
- Define	CT	classical	random	walk,	quantize	it	introducing		quantum	amplitudes	in	place	of	classical	probabilities
- Define	CT	classical	random	walk	on	position	space	spanned	by	vertex	set	V	of	graph	G	with	edge	set	E,	G=(V,E)

- Step	of	QW	described	by	adjacency	matrix,	transform	prob distribution	over	V

- For	each	pair	(j,k)	that	belongs	to	
- Other	important	matrix	is	generator	matrix

- Dj=	degree	of	vertex	,	gamma	is	prob of	transition	between	neighboring	nodes	per	unit	time
- Transition	on	graph	G	defined	by	solution	to	differential	equation	

- where	rate	of	change	of	probability	of	being	at	vertex	j	at	time	t,	pj(t)
- Solution:

7

arXiv:1001.5326



CT	QW
- Replace	probabilities	by	quantum	amplitudes- |j>	spans	orthogonal	position	basis,	introduce	factor	i

- CT	QW	ó Schrodinger	eqn

- E.g.	CT	on	line,

- Evolve	system	via	
- Where	Hamiltonian=generator	matrix	which	evolves	prob distribution	given	by
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DT	QW	(1D)

- Discrete	time	QW	similar	to	the	classical	discrete	random	walk	where	the	walk	takes	places	on	a	position	space	with	instruction	from	a	coin	
operation

- Classsical there	is	a	coin	flip,	determines	direction	particles	moves	in,	position	shift	moves	the	particle	in	corresponding	direction
- Walk	on	line:	2	sidied coin	head	and	tails	with	equal	prob determines	movement	to	left	or	right
- In	quantum	case:	coin	flip	replaced	by	quantum	coin	operation	which	creates	a	superposition	of	directions	to	which	the	particle	evolves	

simultaneously

- Followed	by	unitary	shift	operation,	repeated	with	large	number	of	steps	without	intermediate	measurements,	retaining	coherence	of	
wavefunction

- Hilbert	space	give	by
- Consider	initial	state	defined	by,	particle	at	origin

-
- A	general	coin	operation	belongs	U(2)	defined	by	4	parameters

- The	shift	operation	is	defined	such	that	if	the	coin	state	is	in	|0>	move	right	and	if	in	|1>	Move	left	i.e.

- Entire	operation	given	by	
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DT	QW(1D)-dynamic	structure

- With	symmetric	structure,	where	p(j.t)	prob of	finding	article	at	positon	j	ant	time	t,	prob at	next	time	step	
given	by	equal	measure	from	immediate	neighbors

- Subtracting	p(j,t)	from	both	sides	leads	to	difference	equation	corresponding	to	the	Standards	classical	
diffusion	eqn

- Irreversible- coin	thrown	away	after		each	toss
- non-relativistic	not	symmetric	in	time	and	space

- For	QW,	information	in	coin	state	carried	throughout	making	QW	reversible.	Lets	see	how	this	happens
- Describe	wavefunction of	state	by	2-component	vector	of	amplitudes	being	at	positon	j	at	time	t	with	left	

moving	and	right	moving	components

- Consider	a	specific	simple	coin	operation	using	 0, 𝜃, − G
.

- Write	overall	action	of	coin	and	conditional	shift	as

- Where	

Starting	off	with	DT	classical	random	walk

−𝑝(𝑗, 𝑡) −𝑝(𝑗, 𝑡)
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A.	Decoupled	DT	QW	in	Klein	Gordon	form
- Using	(1)	we	can	write	out	the	individual	LM	and	RM	components	at	time	t+1	as

Can	decouple	ΨN and	ΨO components	to	get

- Using	the	definitions	of	the	difference	operator	(*)

- If	we	subtract	2ΨO(𝑗, 𝑡) from	both	sides	of	(1)	we	obtain	a	difference	equation	corresponding	to	the	differential	equation

- Re-arranging	this	we	see	that	this	corresponds	to	the	Klein-Gordon	equation	
- Where	

h=1,	→ 𝜕R
.

So	that	each	component	of	the	DT	
QW	has	the	relativistic	character	of	
a	free	spin-0	particle

(*)
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B.	Decoupled	DT	QW	in	Schrodinger	form
- KG	eqn’s can	then	be	transformed	into	the	Schrodinger	equation
- Transform	(2)-second	order	in	time-into	system	of	2	coupled	differential	equations	first	order	in	time	using	ansatz

- Can	show	that	the	following	coupled	eqns are	equivalent	to	(2)	

- Subtracting	(5)	from	(4),	and	re-arranging	(3)
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B.	Decoupled	DT	QW	in	Schrodinger	form
- So	looking	at	(4)	and	(5)	they	can	be	combined	by	introducing	the	column	vector
-

- And	using	the	4	2x2	matrices

- with	algebraic	relations

- We	can	form	the	schrodinger-type	equation

- Where	

- And	𝑃T = 𝑖ℏ𝛻

- And	we	can	obtain	a	similar	eqn for	ΨN

- We	have	found	that	each	component	of	DT	QW	has	a	structure	similar	to	KG	eqn which	can	also	be	written	as	coupled	schrodinger eqn
- So	a	DT	QW	can	be	described	as	a	coupled	form	of	the	CT	QW	driven	by	2	Hamiltonians	𝜢X𝑳 and	𝜢X𝑹
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So	what	+	how?
- Both	discrete	and	continuous	QWs	have	natural	implementations	within	quantum	computers
- A	very	well	studied	type	of	DT	QW	implemented	on	a	quantum	computer	is	the	Hadamard walk	coin	operation	is	given	by	the	hadamard gate

- Again	the	coin	space	is	defined	in	this	1D	walk	by	the	computational	basis	of	a	qubit	i.e.	|0>	and	|1>
- Whilst	position	states	defined	by	integers
- If	we	start	with	initial	state							

- a	single	step	first	applies	the	coin	operator	and	then	applies	a	shift

- Measuring	in	the	standard	coin	basis	gives	with	probability	½

- If	we	continued	by	measuring	after	each	iteration	we	would	get	the	classical	random	walk	on	the	line	where	
the	limiting	distribution	approaches	a	gaussian distribution	with	mean	zero	and	variance	

14
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- Another	example	where	there	is	speed	up	in	QWs	is	in	expected	hitting	time	in	graphs,	i.e.	the	time	
it	takes	for	a	random	walk	to	reach	a	point	T	on	a	graph	from	point	S.	

- a	graph	Gn of	to	n-level	binary	trees	glued	together	at	their	leaves	for	example	G4

- For	classical	case	it	was	found	that	the	prob of	reaching	column	2n	in	polynomial	time	in	n	was	
exponentially	small	in	n

- Whilst	implementing	the	walk	as	CT	QW	with	2n+1	vertices	it	was	found	that	speed	of	propagation	
on	infinite	line	was	linear	in	time	T

- In	the	QW	i.e.	without	measurement	the	interference	will	cause	a	radically	different	behavior	of	the	QW
- Just	by	considering	the	initial	state	after	3	steps	we	get,	asymmetry	with	respect	to	different	positons

- Staring	with	a	symmetric	initial	state	i.e.	superposition	of	coin	states,	the	hadamard walk	after	100	steps	results	in	
the	following	distribution

- This	has	a	variance	of	which	gives	an	expected	distance	from	the	original	of	~	the	QW	propagates	quadratic	ally	
faster G4

2n+1	columns
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Parton	Shower	Quantum	Algorithm?
• Monte	Carlo	event	generators		are	

used	to	simulate	high	energy	
collisions	at	the	LHC

• simulation	is	split	into	several	
stages.
• hard-scattering	of	incoming	

partons stemming	from	
colliding	protons

• Producing	highly	energetic	
states	which	then	decay.

• Going	to	lower	energetic	scales,	
the	incoming	hadrons	as	well	as	
the	outgoing	particles	radiate	
lighter	particles,	like	gluons	and	
photons	

• they	are	able	to	radiate	further,	
producing	a	cascade	of	particles	
which	realised through	the	parton
shower	algorithm

• Evolve	down	energy	scales	leading	
to	hadronization

• Markov	chain	algorithm->Random	walk?
• Previous	Quantum	algorithms	for	parton showers:	arXiv:1904.03196v2	
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Parton	Shower-Outline

- We	consider	a	discrete,	collinear	toy	QCD	model	comprising	one	gluon	and	one	quark	flavour
- Only	consider	collinear	splittings,	not	keeping	track	of	kinematics	which	means	can	also	be	encoded	in	available	

qubit-restricted	quantum	computers	

Collinear	condition:	
𝑘

𝑖

𝑗

𝑃 𝑝0 = 𝑧𝑃,

𝑝] = 1 − 𝑧 𝑃

𝑃 →^_ 𝑧 = 𝐶a
1 + (1 − 𝑧).

𝑧
, 𝑃_→__ 𝑧 = 𝐶b 2

1 − 𝑧
𝑧

+ 𝑧(1 − 𝑧)	 , 𝑃_→^ ĉ 𝑧 = 𝑛e𝑇O 𝑧. + (1 − 𝑧). ,
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Parton	Shower	- outline
• Sudakov factors	are	used	to	determine	whether	an	emission	occurs

∆0,h 𝑧0, 𝑧h = 𝑒𝑥𝑝 −𝛼i. ∫ 𝑃hk 𝑧l 𝑑𝑧′
op
oq

, ∆RrR 𝑧8, 𝑧. = ∆_st 𝑧8, 𝑧. ∆^su 𝑧8, 𝑧. ∆ ĉsuv 𝑧8, 𝑧. ,

• The	overall	splitting	probability	is	given	by	the	Sudakovs,	and	the	splitting	functions	such	that

𝑃𝑟𝑜𝑏h→0] = 1 − ∆h ×𝑃h→0](𝑧)

• Shower	evolution	is	determined	by	exponentially	decreasing	the	evolution	variable	z	with	number	of	steps
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QW	approach	to	PS

• consider	an	initial	simple	model	with	a	single	
particle	type,	𝜙

• probability	of	emission	in	the	QW	formalism	is	
encoded	within	the	coin	operation given	by

𝜙 → 𝜙𝜙:	𝑃}→}}

𝜙

𝜙

𝜙

• define	the	position	Hilbert	
space	where	basis	states	given	
by	number	of	phi	particle,

• Where		
|nφ〉

nφ ∈ Z
∗

𝐶 =
1 − 𝑃]h

� − 𝑃]h
�

𝑃]h
� 1 − 𝑃]h

�
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QW	approach	to	PS

• Now	we	consider	a	2	dimensional	model	considering	
simulation	of	both	quarks	and	gluons	

• enlarge	the	coin	Hilbert	space	to	encode	3	types	of	
splitting	probabilities	given	by	

𝑃0] = 1 − ∆h ×𝑃h→0](𝑧)

• S	operator	now	updates	either	the	gluon	number	
or	quark	number	on	each	respective	axis	
conditioned	on	the	states	of	the	coin	space
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QW	approach	
to	PS
• algorithm	was	implemented	on	IBM	

Q	Quantum	Simulator,	using	16	
qubits	simulating	31	shower	steps

• The	algorithm	scales	as	2𝑙𝑜𝑔.(𝑁 +
1) + 4

• By	reframing	the	parton	shower	in	
the	quantum	walk	framework	
greatly	increases	number	of	shower	
steps	possible	to	simulate	in	
comparison	to	previous	quantum	
algorithms,	whilst	also	using	less	
volume
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QW	approach	
to	PS
• Probability	distribution	of	the	

number	of	gluons	measured	at	the	
end	of	the	31-step	parton shower	
for	the	classical	and	quantum	
algorithms	

• zero	quark	anti-quark	pairs	(left)	and	
exactly	one	quark	anti-quark	pair	
(right)	

• run	on	the	IBMQ	32-qubit	quantum	
simulator	for	500,000	shots,	and	the	
classical	algorithm	has	been	run	for	
106 shots.	
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Summary

• Demonstrated	the	ability	to	calculate	shower	histories	of	parton shower	in	full	superposition
• Found	that	reframing	parton shower	in	as	a	quantum	walk	algorithm	provides	a	more	natural	and	efficient	
approach	to	simulating	parton showers

Presented	a	dedicated	quantum	algorithm	for	the	simulation	of	parton shower	
in	high	energy	collisions

• Would	like	to	introduce	kinematics	which	will	vastly	increase	realism	of	the	quantum	algorithm.	Algorithm	
presented	here	can	be	seen	as	a	first	step	towards	a	full	and	realistic	quantum	simulation	of	a	high	energy	
collision	process.

In	the	future:	
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