

Mixed QCD-EW corrections to vector-boson production

In collaboration with: A. Behring, F. Buccioni, F. Caola, M. Jaquier, K. Melnikov, R. Röntsch

Based on: 1909.08428, 2005.10221, 2009.10386, 2103.02671

Maximilian Delto
ISSP at EMFCSC
21th of June 2022

QCD computations have reached N3LO

Fully-differential description of color-singlet production at the LHC has recently reached N3LO in perturbative QCD.

- ⇒ Higgs production [Chen et al. '21]
- ⇒ Drell-Yan [Chen et al. '22]

Parametrically, $\alpha_s^3 \sim \alpha_s \alpha$. $\alpha_s(M_Z) \sim 0.1$, $\alpha \sim 1/100$

These computations are vital for precise studies at the LHC.

[Chen et al. '22]

M_W as a precision test

electroweak fits

$$M_W^2(1 - M_W^2/M_Z^2) = \frac{\pi \alpha}{\sqrt{2}G_F}(1 + \Delta r)$$

$$M_W = 80354 \pm 7 \text{ MeV [Gfitter'18]}$$

$$M_W = 80359 \pm 5 \text{ MeV [HEPfit'21]}$$

recent direct measurements

[ATLAS '17] : $80370 \pm 7_{\rm stat} \pm 11_{\rm sys} \pm 14_{\rm mod}$ MeV

[LHCb '21] : $80354 \pm 23_{\text{stat}} \pm 10_{\text{exp}} \pm 17_{\text{th}} \pm 9_{\text{pdf}}$ MeV

[CDF '22] : $80433.5 \pm 6.4_{\rm stat} \pm 6.9_{\rm sys}$ MeV

comparison

Measurement of M_W (at hadron colliders)

- through leptonic decay $pp o W^* o \ell ar{m{v}}$
- partonic center-of-mass energy \hat{s} not known, neutrino momentum p_{ν} cannot be measured
 - \Rightarrow measurements use shape of distributions in p_{\perp}^{ℓ} and m_{\perp}^{W}

- W-boson width, pile-up
- See [Smith,van Neerven,Vermaseren '83]

- at LO: $p_{\perp}^{\ell} \le m_W/2$
- perturbative corrections

Measurement of M_W (at hadron colliders)

template fit

collinear factorization [Collins, Soper, Sterman '88]

$$\sigma = \sum_{i,j} \int_{0}^{1} dx_{1} dx_{2} \underbrace{f_{i}(x_{1}) f_{j}(x_{2})}_{\mathcal{O}(1\%)} \underbrace{\sigma_{ij}(x_{1}, x_{2})}_{\mathcal{O}(1\%)}$$

$$+ \mathcal{O}\left(\frac{\Lambda_{QCD}^{2}}{\mathcal{Q}^{2}}\right)$$

 $\Rightarrow p_{\perp}^{W}$ spectrum can not be predicted to required precision.

- ullet experimental analyses use Z-boson data to predict p_\perp^W distribution
- ullet hence, measurement is sensitive to effects that distinguish between W and Z
- these include PDFs, massive-quark effects, NLO EW and NNLO QCD-EW corrections

Vector-boson production at $\mathcal{O}(\alpha_s \alpha)$

• p_{\perp}^W/p_{\perp}^Z distribution is dominated by the <u>on-shell</u> production of vector bosons

[Dittmaier et al. '14 '16] [Behring et al. '19 '20]

• full, off-shell process $pp o \ell \bar{\ell}$ was completed recently [Bonciani et al. '21] [Buccioni et al. '22]

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\mathbf{O}}\bigg|_{\alpha_{s}} = 2\Re\left[\underbrace{\sum_{v_{2}}^{p_{1}} \times \sum_{p_{2}}^{p_{1}} \times \sum_{p_{2}}^{p_{1}} \mathbf{F_{O}} \mathrm{d}\Phi_{X} + \left| \sum_{p_{2}}^{p_{1}} \times \sum_{p_{2}}^{p_{1}} \mathbf{F_{O}} \mathrm{d}\Phi_{X+g} + \mathrm{d}\sigma^{gq} + \mathrm{d}\sigma^{pdf} \right]$$

ullet cross-section is *finite* for arbitrary "infrared-safe" observable ${\mathscr F}$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\mathbf{O}}\bigg|_{\alpha_{s}} = 2\Re\left[\sum_{\substack{p_{1}\\ p_{2}\\ > 1/\mathcal{E}^{2}}}^{p_{1}} \times \sum_{\substack{p_{2}\\ p_{2}\\ > 1/\mathcal{E}^{2}}}^{\dagger}\right] \mathscr{F}_{\mathbf{O}} \mathrm{d}\Phi_{X} + \left|\sum_{\substack{p_{1}\\ p_{2}\\ > 1/\mathcal{E}^{2}}}^{\dagger} + \sum_{\substack{p_{2}\\ p_{2}\\ > 1/\mathcal{E}^{2}}}^{\dagger} \mathrm{d}\Phi_{X+g} + \mathrm{d}\sigma^{gq} + \mathrm{d}\sigma^{pdf}\right]$$

- ullet cross-section is *finite* for arbitrary "infrared-safe" observable ${\mathscr F}$
- individually, soft and collinear divergences arise from

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\mathbf{O}}\bigg|_{\alpha_{s}} = 2\Re\left[\sum_{\substack{p_{1}\\p_{2}\\p_{2}\\p_{2}}}^{p_{1}}\times\sum_{p_{2}}^{\uparrow}\right]\mathscr{F}_{\mathbf{O}}\mathrm{d}\Phi_{X} + \left|\sum_{\substack{p_{1}\\p_{2}\\p_{2}}}^{\uparrow}\times\sum_{\mathbf{O}}^{\uparrow}\right|^{2}\mathscr{F}_{\mathbf{O}}^{(1)}\mathrm{d}\Phi_{X+g} + \mathrm{d}\sigma^{gq} + \mathrm{d}\sigma^{pdf}$$

- ullet cross-section is *finite* for arbitrary "infrared-safe" observable ${\mathscr F}$
- individually, soft and collinear divergences arise from
 - loop integrals in virtual corrections

- cross-section is *finite* for arbitrary "infrared-safe" observable ${\mathscr F}$
- individually, soft and collinear divergences arise from
 - loop integrals in virtual corrections
 - phase-space integration over on-shell momenta of final-state partons in real-emission corrections

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\mathbf{O}}\bigg|_{\alpha_{s}} = 2\Re\left[\sum_{p_{2}}^{p_{1}} \times \times \times \times \times \right] \mathscr{F}_{\mathbf{O}} \mathrm{d}\Phi_{X} + \left|\sum_{p_{2}}^{p_{1}} \times \times \times \times \times \times \times \times \times \right|^{2} \mathscr{F}_{\mathbf{O}}^{(1)} \mathrm{d}\Phi_{X+g} + \mathrm{d}\sigma^{pdf}$$

- ullet cross-section is *finite* for arbitrary "infrared-safe" observable ${\mathscr F}$
- individually, soft and collinear divergences arise from
 - loop integrals in virtual corrections
 - phase-space integration over on-shell momenta of final-state partons in real-emission corrections
- need to be regulated, extracted and cancelled

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\mathbf{O}}\bigg|_{\alpha_{s}} = 2\,\mathfrak{R}\bigg[\sum_{p_{2} \atop p_{2}}^{p_{1}} \times \sum_{p_{2}}^{p_{1}} \times \sum_{p_{2}}^{\dagger} \bigg] \mathscr{F}_{\mathbf{O}} \,\mathrm{d}\Phi_{X} + \bigg|_{p_{2}}^{p_{1}} \times \sum_{p_{2}}^{\dagger} \times \sum_{p_{$$

- ullet cross-section is *finite* for arbitrary "infrared-safe" observable ${\mathscr F}$
- individually, soft and collinear divergences arise from
 - loop integrals in virtual corrections
 - phase-space integration over on-shell momenta of final-state partons in real-emission corrections
- · need to be regulated, extracted and cancelled
- ullet only then can the limit arepsilon o 0 be taken prior to numerical simulation

тип

Infrared divergences at NLO

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\mathbf{O}}\bigg|_{\alpha_{s}} = 2\,\mathfrak{R}\bigg[\sum_{\substack{p_{1}\\p_{2}\\ }}^{p_{1}} \times \times \times \times \times \times \bigg] \mathscr{F}_{\mathbf{O}}\,\mathrm{d}\Phi_{X} + \bigg|_{\substack{p_{1}\\p_{2}\\ }}^{p_{1}} \times \times \times \times \times \times \bigg|_{\substack{p_{2}\\p_{2}\\ }}^{p_{1}} \times \times \times \times \times \times \bigg|_{\substack{p_{2}\\p_{2}\\ }}^{p_{1}} \times \times \times \times \times \times \bigg|_{\substack{p_{1}\\p_{2}\\ }}^{p_{1}} \times \times \times \times \times \times \bigg|_{\substack{p_{2}\\p_{2}\\ }}^{p_{1}} \times \times \times \times \times \times \bigg|_{\substack{p_{1}\\p_{2}\\ }}^{p_{1}} \times \times \times \times \times \times \bigg|_{\substack{p_{2}\\p_{2}\\ }}^{p_{1}} \times \times \times \times \times \bigg|_{\substack{p_{2}\\p_{2}\\ }}^{p_{1}} \times \times \times \times \times \bigg|_{\substack{p_{1}\\p_{2}\\ }}^{p_{1}} \times \times \times \times \times \bigg|_{\substack{p_{2}\\p_{2}\\ }}^{p_{1}} \times \times \times \times \times \bigg|_{\substack{p_{1}\\p_{2}\\ }}^{p_{1}} \times \times \times \times \times \bigg|_{\substack{p_{2}\\p_{2}\\ }}^{p_{1}} \times \times \times \times \bigg|_{\substack{p_{1}\\p_{2}\\ }}^{p_{1}} \times \times \times \times \bigg|_{\substack{p_{2}\\p_{2}\\ }}^{p_{1}} \times \times \times \times \bigg|_{\substack{p_{1}\\p_{2}\\ }}^{p_{1}} \times \times \times \times \bigg|_{\substack{p_{2}\\p_{2}\\ }}^{p_{1}} \times \times \times \times \bigg|_{\substack{p_{1}\\p_{2}\\ }}^{p_{2}} \times \times \times \bigg|_{\substack{p_{2}\\p_{2}\\ }}^{p_{1}} \times \times \times \bigg|_{\substack{p_{1}\\p_{2}\\ }}^{p_{2}} \times \times \times \bigg|_{\substack{p_{2}\\p_{2}\\ }}^{p_{1}} \times \times \times \bigg|_{\substack{p_{1}\\p_{2}\\ }}^{p_{2}} \times \times \times \bigg|_{\substack{p_{2}\\p_{2}\\ }}^{p_{1}} \times \times \times \bigg|_{\substack{p_{2}\\p_{2}\\ }}^{p_{2}} \times \bigg|_{\substack{p_{2}\\p_{2}\\ }}^{p_{2}\\ }}^{p_{2}} \times \bigg|_{\substack{p_{2}\\p_{2}\\ }}^{p_{2}\\ }}^{p_{2}} \times \bigg|_{\substack{p_{2}\\p_{2}\\ }}^{p_{2}\\ }}^{p_{2}\\ }^{p_{2}\\ }}^{p_{2}\\ }^{p_{2}\\ }}^{p_{2}\\ }^{p_{2}\\ }^{p_{2}\\ }}^{p_{2}\\ }^{p_{2}\\ }^{p_{2}\\ }}^{p_{2}\\ }^{p_{2}\\ }^{p_{2}\\ }^{p_{2}\\ }^{p_{2}\\ }}^{p_{2}\\ }^{p_{2}\\ }^{p_{2}\\ }^{p_{2}\\ }}^{p_{2}\\ }^{p_{2}\\ }^{p_{2}\\$$

- ullet cross-section is *finite* for arbitrary "infrared-safe" observable ${\mathscr F}$
- individually, soft and collinear divergences arise from
 - loop integrals in virtual corrections
 - phase-space integration over on-shell momenta of final-state partons in real-emission corrections
- need to be regulated, extracted and cancelled
- ullet only then can the limit arepsilon o 0 be taken prior to numerical simulation
 - ⇒ slicing and subtraction schemes are used to define contributions that are individually finite

$$d\sigma\Big|_{\alpha_s} = d\sigma_{X+1} + d\sigma_X$$

 $\frac{1}{p_1 \cdot k_4} \sim \frac{1}{E_1 E_4 (1 - \cos \theta_{14})}$

тип

Infrared subtraction at NLO

general idea is to subtract and add back matrix elements that approximate singular behavior

$$\mathrm{d}\sigma^{q\bar{q}}(d=4-2{\color{red}\epsilon}) = \underbrace{(\mathrm{d}\sigma^r - \mathrm{d}\widetilde{\sigma}^r)}_{\text{regulated term}} \bigg|_{\substack{d=4}} + \underbrace{\mathrm{d}\widetilde{\sigma}^r({\color{blue}\epsilon})}_{\text{subtraction term}}$$

pole cancellation

$$\lim_{\epsilon \to 0} \left[d\sigma^{\text{pdf}} + d\sigma^{\text{V}}(\boldsymbol{\epsilon}) + d\widetilde{\sigma}^{\text{r}}(\boldsymbol{\epsilon}) \right] = \text{finite}$$

example for soft-regulated emission of a gluon

$$d\sigma^{q\bar{q}} = \left\{ \begin{vmatrix} p_1 & p_1 & p_1 \\ p_2 & p_2 & p_2 \end{vmatrix}^2 - \frac{2g_s^2 C_F(p_1 \cdot p_2)}{(p_1 \cdot k_4)(p_2 \cdot k_4)} \begin{vmatrix} p_1 & p_2 \\ p_2 & p_2 \end{vmatrix} + \underbrace{\left(\int [dk_4] \frac{2g_s^2 C_F(p_1 \cdot p_2)}{(p_1 \cdot k_4)(p_2 \cdot k_4)} \right)}_{\sim 1/\varepsilon^2} \times \begin{pmatrix} p_1 & p_2 & p_2 \\ p_2 & p_2 & p_2 \end{vmatrix} \right\} d\Phi_V$$

NB similar formula for remaining collinear divergence

Quark emission at NNLO QCD-EW

• only triple-collinear divergence $p_2||k_4||k_5|$ due to continuous quark line

$$\mathrm{d}\sigma_{ud \to W^+ dd}^{\mathrm{rr}} = \left\langle [\mathrm{d}k_4][\mathrm{d}k_5] \left(I - \hat{\boldsymbol{C}} C_2 \right) F_{\mathrm{L}M} \left(1_u, 2_d, W^+; 4_d, 5_d \right) \right\rangle \qquad \leftarrow \text{fully regulated} \\ + \left\langle [\mathrm{d}k_4][\mathrm{d}k_5] \hat{\boldsymbol{C}} C_2 F_{\mathrm{L}M} \left(1_u, 2_d, W^+; 4_d, 5_d \right) \right\rangle \qquad \leftarrow \text{subtraction term}$$

• integrated triple-collinear subtraction terms were computed in the context of NNLO QCD corrections [MD,Melnikov '19], results can be re-used here

$$\left\langle [\mathrm{d}k_4][\mathrm{d}k_5] \mathscr{C}_2 \, F_{\mathrm{L}M} \big(1_u, 2_d, W^+; 4_d, 5_d \big) \right\rangle$$

$$\sim \alpha_s \, \alpha \times \int_0^1 \mathrm{d}z \left[\underbrace{\frac{f_1(z)}{\mathcal{E}}}_{\text{pole cancellation}} + \underbrace{f_0(z)}_{\text{physical XS}} \right] \left\langle \frac{C_F Q_d^2 \, F_{\mathrm{L}M} (1_u, z \cdot 2_{\bar{d}})}{z} \right\rangle, \quad z = \frac{E_2 - E_4 - E_5}{E_2}$$

- goal: construct "simple" observable for M_W^{exp} that makes use of both the $p_{\ell,Z}^{\perp}$ distribution and the precisely measured Z-boson mass
- \rightarrow define normalized average momentum as

$$\left\langle p_{\ell,V}^{\perp} \; \theta \left[p_{\ell,V}^{\perp} - p_{\mathsf{cut}}^{\perp}
ight]
ight
angle = rac{\int heta^{\mathsf{cut}} p_{\ell,V}^{\perp} imes rac{\mathrm{d}\sigma_{V}}{\mathrm{d}p_{\ell,V}^{\perp}} \, \mathrm{d}p_{\ell,V}^{\perp}}{\int heta^{\mathsf{cut}} \, \mathrm{d}\sigma_{V}} = M_{V} imes f \left(rac{p_{\mathsf{cut}}^{\perp}}{M_{V}}
ight)$$

ightarrow define observable M_W^{exp} as

$$M_W^{\mathsf{exp}} = rac{\left\langle p_{\ell,W}^{\perp}
ight
angle^{\mathsf{exp}}}{\left\langle p_{\ell,Z}^{\perp}
ight
angle^{\mathsf{exp}}} M_Z \, C_{\mathsf{th}} \,, \quad C_{\mathsf{th}} = rac{M_W}{M_Z} rac{\left\langle p_{\ell,Z}^{\perp}
ight
angle^{\mathsf{th}}}{\left\langle p_{\ell,W}^{\perp}
ight
angle^{\mathsf{th}}} \,.$$

• updated theoretical description shifts extracted value of M_W

$$\delta M_W^{\mathsf{exp}} = \left[rac{\delta \left\langle p_{\ell,Z}^{\perp}
ight
angle^{\mathsf{th}}}{\left\langle p_{\ell,Z}^{\perp}
ight
angle^{\mathsf{th}}} - rac{\delta \left\langle p_{\ell,W}^{\perp}
ight
angle^{\mathsf{th}}}{\left\langle p_{\ell,W}^{\perp}
ight
angle^{\mathsf{th}}}
ight] M_W^{\mathsf{exp}}$$

	inclusive	ATLAS cuts	tuned cuts
NLO EW	1 MeV	3 MeV	−3 MeV
NNLO QCD-EW	<u>-7 MeV</u>	-17 MeV	-1 MeV

$$\begin{split} \delta \left\langle p_{\ell,W}^{\perp} \right\rangle^{\text{th}} / \left\langle p_{\ell,W}^{\perp} \right\rangle^{\text{th}} \times M_W^{\text{exp}} \sim \mathscr{O}(30-50) \text{ MeV} \\ \Rightarrow \text{large cancellation by one order of magnitude} \\ \Rightarrow \text{sensitive to cuts} \end{split}$$

• updated theoretical description shifts extracted value of M_W

$$\delta M_W^{\mathsf{exp}} = \left[rac{\delta \left\langle p_{\ell,Z}^{\perp}
ight
angle^{\mathsf{th}}}{\left\langle p_{\ell,Z}^{\perp}
ight
angle^{\mathsf{th}}} - rac{\delta \left\langle p_{\ell,W}^{\perp}
ight
angle^{\mathsf{th}}}{\left\langle p_{\ell,W}^{\perp}
ight
angle^{\mathsf{th}}}
ight] M_W^{\mathsf{exp}}$$

	inclusive	ATLAS cuts	tuned cuts
NLO EW	1 MeV	3 MeV	−3 MeV
NNLO QCD-EW	−7 MeV	<u>−17 MeV</u>	−1 MeV

ATLAS
$$p_{\ell,V}^{\perp}$$
-cuts: $\rightarrow p_{\text{cut},Z}^{\perp} = 25 \text{ GeV}$ $\rightarrow p_{\text{cut},W}^{\perp} = 30 \text{ GeV}$

 \Rightarrow moves average momentum in decays of the <u>lighter</u> W boson towards higher values

• updated theoretical description shifts extracted value of M_W

$$\delta M_W^{\mathsf{exp}} = \left[rac{\delta \left\langle p_{\ell,Z}^{\perp}
ight
angle^{\mathsf{th}}}{\left\langle p_{\ell,Z}^{\perp}
ight
angle^{\mathsf{th}}} - rac{\delta \left\langle p_{\ell,W}^{\perp}
ight
angle^{\mathsf{th}}}{\left\langle p_{\ell,W}^{\perp}
ight
angle^{\mathsf{th}}}
ight] M_W^{\mathsf{exp}}$$

	inclusive	ATLAS cuts	tuned cuts
NLO EW	1 MeV	3 MeV	_3 MeV
NNLO QCD-EW	−7 MeV	-17 MeV	<u>−1 MeV</u>

find tuned value for
$$p_{{
m cut},W}^{\perp}$$
 such that $C_{
m th}^{
m LO}=1$ with $p_{{
m cut},Z}^{\perp}=25~{
m GeV}$ $\Rightarrow p_{{
m cut},W}^{\perp}=25.44~{
m GeV}$ (instead of $p_{{
m cut},W}^{\perp}=30~{
m GeV}$)

Conclusion

- fully-differential description of QCD-EW corrections to on-shell vector-boson production
 - regularisation of infrared singularities
 - analytic computation of integrated subtraction terms
 - (on-shell form factor $pp \to W$, including two-loop master integrals with two internal masses)
- ightarrow QCD-EW corrections were estimated to shift the measurement of M_W by up to -17 MeV

Outlook

⇒ this result warrants further studies, which incorporate all relevant details of experimental analyses

Backup

Breakdown LHCb uncertainties

Source	Size [MeV]
Parton distribution functions	9
Theory (excl. PDFs) total	17
Transverse momentum model	11
Angular coefficients	10
QED FSR model	7
Additional electroweak corrections	5
Experimental total	10
Momentum scale and resolution modelling	7
Muon ID, trigger and tracking efficiency	6
Isolation efficiency	4
QCD background	2
Statistical	23
Total	32

[LHCb '21]

Breakdown CDF uncertainties

Table 2. Uncertainties on the combined M_W result.

Source	Uncertainty (MeV)
Lepton energy scale	3.0
Lepton energy resolution	1.2
Recoil energy scale	1.2
Recoil energy resolution	1.8
Lepton efficiency	0.4
Lepton removal	1.2
Backgrounds	3.3
$p_{\mathrm{T}}^{\mathrm{Z}}$ model	1.8
$p_{\mathrm{T}}^{W}/p_{\mathrm{T}}^{Z}$ model	1.3
Parton distributions	3.9
QED radiation	2.7
W boson statistics	6.4
Total	9.4

[CDF '22]