
Efficient statistics for future 
neutrino oscillation experiments
2022-06-19, Erice School of Subnuclear Physics


Lukas Berns, Tohoku University


first few slides are with T2K and SK Collaborations

↑ view on Sendai city



1.5m

Designed
beam center

Super‐Kamiokande J‐PARCNear Detectors

Neutrino Beam

295 km

Mt. Noguchi‐Goro
2,924 m

Mt. Ikeno‐Yama
1,360 m

1,700 m below sea level

              experiment

• Study oscillation of neutrino beam from J-PARC accelerator

• ~500 collaborators from institutions in 12 countries

2

© ICRR

, , , , , , νμ νμ νμ νμ νμ νμ νμ, , , , , , ντ ντ ντ ντ νe νμ νμ

νμ νμ νμ νμ νμ νμ

Neutrino oscillation 10
Tomasz Barszczak

Observe neutrino beam from J-PARC, 295km away at Super-
Kamiokande (SK). Current goal: evidence of CP violation.

ντ ντ ντ νμ νμ νe

6

Table III summarizes the fractional error on the ex-
pected number of SK events using a 1� variation of the
flux, cross-section, and far detector uncertainties.

E. Oscillation analysis

The analysis method here follows from what was pre-
sented in [1]. As described in Sec. I the three flavor
neutrino oscillation formalism is extended to include in-
dependent parameters sin2(✓23) and �m2

32 which only
a↵ect antineutrino oscillations. Any di↵erence between
sin2(✓23) and sin2(✓23) or �m2

32 and �m2
32 could be in-

terpreted as new physics.
With the number of events predicted in the antineu-

trino sample, the uncertainties on the background mod-
els have a non-negligible impact on the measurement of
sin2(✓23) and �m2

32. The largest is the contribution
from the uncertainty on sin2(✓23) and �m2

32 due to the
significant neutrino background in the antineutrino sam-
ple. This provides the motivation for a simultaneous fit
of the neutrino and antineutrino data sets.

The oscillation parameters of interest, sin2(✓23),�m2
32,

sin2(✓23) and�m2
32, are estimated using a maximum like-

lihood fit to the measured reconstructed energy spectra
in the far detector, for neutrino mode and antineutrino
mode µ-like samples. In each case, fits are performed
by maximizing the marginal likelihood in the two dimen-
sional parameter space for each pair of parameters. The
marginal likelihood is obtained by integrating over the
nuisance parameters f with prior probability densities
⇡(f), giving a likelihood as a function of only the rele-
vant oscillation parameters o:

L(o) =
Z binsY

i

Li(o, f)⇥ ⇡(f) df , (1)

where bins denotes the number of analysis bins. All other
oscillation parameters, except �CP , are treated as nui-
sance parameters along with systematic parameters and
are marginalized in the construction of the likelihood.
�CP is fixed to 0 in each fit as it has a negligible impact
on the disappearance spectra at T2K. Oscillation prob-
abilities are calculated using the full three-flavor oscilla-
tion framework [38], with sin2(✓23) and �m2

32 for ⌫, and
sin2(✓23) and �m2

32 for ⌫. Matter e↵ects, almost negli-
gible in this analysis, are included with a matter density
of ⇢ = 2.6 g/cm3 [39].

Confidence regions are constructed for the oscillation
parameters using the constant ��2 method [37]. We
define ��2 = �2 ln(L(o)/max(L)) as the logarithm of
the ratio of the marginal likelihood at a point o in the
sin2(

(

✓
)

23) – �(m)2
32 oscillation parameter space and the

maximum marginal likelihood. The confidence region
is then defined as the area of the oscillation parameter
space for which ��2 is less than a standard critical value.
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FIG. 1. Top: Reconstructed energy distribution of the 135 far
detector ⌫µ-CCQE candidate events (left) and 66 ⌫µ-CCQE
candidate events (right), with predicted spectra for best fit
and no oscillation cases. Bottom: Ratio to unoscillated pre-
dictions.

This method was used as the di↵erence between the con-
fidence regions produced by it and those obtained using
the Feldman-Cousins [40] method was found to be small.
For the Feldman-Cousins method, the critical chi-square
values were calculated for a coarse set of points in the
oscillation parameter space.

IV. RESULTS AND DISCUSSION

The reconstructed energy spectra of the events ob-
served during neutrino and antineutrino running modes
are shown in Figure 1. These are overlaid with the predic-
tions for the best fit values of the oscillation parameters
assuming normal hierarchy, and in the case of no oscilla-
tions. The lower plots in Fig. 1 show the ratio of data
to the unoscillated spectrum.
Assuming normal hierarchy, the best fit values ob-

tained for the parameters describing neutrino oscillations
are sin2(✓23) = 0.51 and �m2

32 = 2.53 ⇥ 10�3eV2/c4

with 68% confidence intervals of 0.44 – 0.59 and 2.40 –
2.68 (⇥10�3eV2/c4) respectively. For the antineutrino
parameters, the best fit values are sin2(✓23) = 0.42 and
�m2

32 = 2.55 ⇥ 10�3eV2/c4 with 68% confidence inter-
vals of 0.35 – 0.67 and 2.28 – 2.88 (⇥10�3eV2/c4) re-
spectively. The values for the inverted hierarchy can
be obtained by replacing �(m)2

32 by ��(m)2
31, e↵ectively

changing the sign of �(m)2
32 and shifting its absolute value

by ��m2
12 = �7.53 ⇥ 10�5 eV2/c4. Those results were

cross-checked using a second, independent, analysis.
A goodness-of-fit test was performed by comparing the

best fit value of the �2 to the values obtained for an
ensemble of toy experiments generated with systematic
variations and statistical fluctuations, giving a p-value of
96%.
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FIG. 1. Top: Reconstructed energy distribution of the 135 far
detector ⌫µ-CCQE candidate events (left) and 66 ⌫µ-CCQE
candidate events (right), with predicted spectra for best fit
and no oscillation cases. Bottom: Ratio to unoscillated pre-
dictions.
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FIG. 1. Top: Reconstructed energy distribution of the 135 far
detector ⌫µ-CCQE candidate events (left) and 66 ⌫µ-CCQE
candidate events (right), with predicted spectra for best fit
and no oscillation cases. Bottom: Ratio to unoscillated pre-
dictions.

This method was used as the di↵erence between the con-
fidence regions produced by it and those obtained using
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values were calculated for a coarse set of points in the
oscillation parameter space.
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FIG. 1. Top: Reconstructed energy distribution of the 135 far
detector ⌫µ-CCQE candidate events (left) and 66 ⌫µ-CCQE
candidate events (right), with predicted spectra for best fit
and no oscillation cases. Bottom: Ratio to unoscillated pre-
dictions.
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Open questions:

• value of  → if , CP violation


• sign of  (mass ordering)


• is  maximal? octant? (i.e.  <  or  > )
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CHAPTER 1. PHYSICS 11

a phase-convention invariant measure of CP violation. In the standard parametrization
of the PMNS matrix

U =




1 0 0
0 c23 s23
0 −s23 c23








c13 0 s13e−iδCP

0 1 0
−s13eiδCP 0 c13








c12 s12 0
−s12 c12 0
0 0 1



 (1.1.30)

cij ≡ cos θij (1.1.31)

sij ≡ sin θij (1.1.32)

this is proportional to sin δCP (and sines and cosines of the three mixing angles θ12, θ23,
θ13). Since this CP violation term is just the last term in the oscillation formula (1.1.22),
it is in principle possible to constrain δCP without preparing an anti-neutrino beam, by
measuring the energy-dependency of the appearance probability.

CP violation in neutrino oscillation demands three neutrino flavors as can be shown
by counting the number of CP violating complex phases (evidently J = 0 if U is real).
The PMNS matrix U is an element of U(N), which has N2 degrees of freedom (N2 − 1
from the traceless hermitian generators and one overall U(1) phase). U(N) contains the
(real) orthogonal matrices O(N) with N(N − 1)/2 degrees of freedom. This leaves us
with N(N + 1)/2 complex phases. We can now try to write U as a sandwich product of
2N diagonal phases and an O(N) core:

Uαi
?
= exp(iφα)Rαi exp(iψi) (R ∈ O(N)) (1.1.33)

where the equality holds if the number of independent degrees of freedom is N2. Such
diagonal phases are CP conserving (in fact have no effect on neutrino oscillation at all):

U∗
αiUβiUαjU

∗
βj = RαiRβiRαjRβj ∈ R. (1.1.34)

So we may think the number of CP violating phases for U(N) is max{N(N + 1)/2− 2N, 0}
(0, 0, 2, 5, . . . for N = 2, 3, 4, 5, . . .), requiring N ≥ 4 generations for CP violation. How-
ever, one overall phase of φα and ψi commutes with R (it’s just a c-number) and is thus
degenerate. The number of independent complex diagonal phases is therefore reduced by
1. This means the number of CP violating phases really is

#CPV = max

{
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}
(1.1.35)

(#CPV = 0, 1, 3, 6, . . . for N = 2, 3, 4, 5, . . .) and CP violation in neutrino oscillation
becomes possible with N ≥ 3 generations. The diagonal phases that we were able to
ignore for neutrino oscillation (called Majorana phases), can still have a physical meaning
if the neutrino is Majorana, and play a role in neutrino-less double-beta decay.

The discussion above was given by Kobayashi and Maskawa [12] to explain the already
observed CP violation in the quark sector by introducing a third generation of quarks.
The mixing matrix is called the Cabibbo-Kobayashi-Maskawa (CKM) matrix and has
very small mixing angles unlike the PMNS matrix. This causes a very small value of the
Jarlskog constant J = (3.18± 0.15)× 10−5 [13]. When studying the impact on the size of
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a phase-convention invariant measure of CP violation. In the standard parametrization
of the PMNS matrix

U =




1 0 0
0 c23 s23
0 −s23 c23








c13 0 s13e−iδCP

0 1 0
−s13eiδCP 0 c13








c12 s12 0
−s12 c12 0
0 0 1



 (1.1.30)

cij ≡ cos θij (1.1.31)

sij ≡ sin θij (1.1.32)

this is proportional to sin δCP (and sines and cosines of the three mixing angles θ12, θ23,
θ13). Since this CP violation term is just the last term in the oscillation formula (1.1.22),
it is in principle possible to constrain δCP without preparing an anti-neutrino beam, by
measuring the energy-dependency of the appearance probability.

CP violation in neutrino oscillation demands three neutrino flavors as can be shown
by counting the number of CP violating complex phases (evidently J = 0 if U is real).
The PMNS matrix U is an element of U(N), which has N2 degrees of freedom (N2 − 1
from the traceless hermitian generators and one overall U(1) phase). U(N) contains the
(real) orthogonal matrices O(N) with N(N − 1)/2 degrees of freedom. This leaves us
with N(N + 1)/2 complex phases. We can now try to write U as a sandwich product of
2N diagonal phases and an O(N) core:

Uαi
?
= exp(iφα)Rαi exp(iψi) (R ∈ O(N)) (1.1.33)

where the equality holds if the number of independent degrees of freedom is N2. Such
diagonal phases are CP conserving (in fact have no effect on neutrino oscillation at all):

U∗
αiUβiUαjU

∗
βj = RαiRβiRαjRβj ∈ R. (1.1.34)
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observed CP violation in the quark sector by introducing a third generation of quarks.
The mixing matrix is called the Cabibbo-Kobayashi-Maskawa (CKM) matrix and has
very small mixing angles unlike the PMNS matrix. This causes a very small value of the
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• 30 GeV protons produce 
π,K in 90 cm graphite target


• Three magnetic horns 
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Focus π,K produced in hadronic interactions.
Switch sign of horn current to focus π–, K– instead

Total three horns to
collect & focus mesons.

π,K+     +

π,K– –

B-field
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INGRID on-axis detector


• Iron-scintillator 
sandwich detectors 
monitor neutrino beam 
direction and intensity

ND280 off-axis detector


• Active scintillator + 
passive water targets


• Tracking with time 
projection chambers


• Magnetized for charge and 
momentum measurement

WAGASCI + BabyMIND


• Latest addition at 
intermediate 1.5º off-axis flux


• Water target with 
cuboid lattice scintillators  
for high angle acceptance


• Compact magnetized iron 
muon range detector


• First xsec meas. published: 
PTEP, ptab014 (2021)

Figure 1: Schematic view of entire sets of detectors.

scintillators, are placed perpendicularly to the beam, and the other 40 bars, called lattice
scintillators, are placed in parallel to the beam with hollow cuboid lattice in the tracking
plane as shown in Figure 5. Thanks to the hollow cuboid lattice of the scintillator bars,
the WAGASCI module has 4π angular acceptance for charged particles.

Thin plastic scintillator bars produced at Fermilab by extrusion method, mainly consists
of polystyrene and are surrounded by thin reflector including TiO2 (3 mm in thickness)
are used for the WAGASCI modules to reduce the mass ratio of scintillator bars to water,
because neutrino interactions in the scintillator bars are a background for the cross section
measurements on H2O. Each scintillator bar is sized as 1020mm×25mm×3 mm including
the reflector part, and half of all the scintillator bars have 50-mm-interval slits to form the
hollow cuboid lattice (Figure 6 ).

We can operate the WAGASCI module with two conditions, water-in and a water-out.
The water-in WAGASCI module has water in spaces of the hollow cuboid lattice. The
total water mass serving as neutrino targets in the fiducial volume of the module is 188 kg,
and the mass ratio of scintillator bars to water is 1 : 4. The water-out WAGASCI module
doesn’t have water inside the detector. The total CH mass serving as neutrino target in
the fiducial volume of the module is 47 kg, and the mass fraction of scintillator bars is 100
%.

Scintillation light is collected by wave length shifting fibers, Y-11 (non-S type with a
diameter of 1.0 mm produced by Kuraray). A fiber is glued by optical cement in a groove
on surface of a scintillator bar. 32 fibers are gathered together by a fiber bundle at edge
of the module, and lead scintillation light to a 32-channel arrayed MPPC. Since crosstalk

6 new!

https://academic.oup.com/ptep/advance-article/doi/10.1093/ptep/ptab014/6156643
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Figure 7: A schematic view of the Super-Kamiokande Detector.

4.3 Far detector: Super-Kamiokande

The far detector, Super-Kamiokande, is located in the Kamioka Observatory, Institute

for Cosmic Ray Research (ICRR), University of Tokyo, which has been successfully taking
data since 1996. The detector is also used as a far detector for K2K experiment. It is a

50,000 ton water Čerenkov detector located at a depth of 2,700 meters water equivalent
in the Kamioka mine in Japan. Its performance and results in atmospheric neutrinos

or solar neutrinos have been well documented elsewhere[1, 5, 6]. A schematic view of
detector is shown as Fig 7. The detector cavity is 42 m in height and 39 m in diameter,
filled with 50,000 tons of pure water. There is an inner detector (ID), 33.8 m diameter and

36.2 m high, surrounded by an outer detector (OD) of approximately 2 m thick. The inner
detector has 11,146 50 cm φ photomultiplier tubes (PMTs), instrumented on all surfaces

of the inner detector on a 70.7 cm grid spacing. The outer detector is instrumented with
1,885 20 cm φ PMTs and used as an anti-counter to identify entering/exiting particles
to/from ID. The fiducial volume is defined as 2 m away from the ID wall, and the total

fiducial mass is 22,500 ton. Čerenkov rings produced by relativistic charged particles are
detected by ID PMT’s. The trigger threshold is recently achieved to be 4.3 MeV. The

pulse hight and timing information of the PMT’s are fitted to reconstruct the vertex,
direction, energy, and particle identification of the Čerenkov rings. A typical vertex,

angular and energy resolution for a 1 GeV µ is 30 cm, 3◦ and 3% for vertex, respectively.
The Čerenkov ring shapes, clear ring for muons and fuzzy ring for electrons, provides
good e/µ identification. A typical rejection factor to separate µ’s from e’s (or vice versa)

is about 100 for a single Čerenkov ring events at 1 GeV. The e’s and µ’s are further
separated by detecting decay electrons from the µ decays. A typical detection efficiency

of decay electrons from cosmic stopping muons is roughly 80% which can be improved
by further analysis. A 4π coverage around the interaction vertex provides an efficient π0

detection and e/π0 separation as discussed in sections 5.2 amd 5.3.
Interactions of neutrinos from the accelerator are identified by synchronizing the tim-

13

Figure 2.5: Left: Schematic overview of the SuperK detector (source [23]). Top right: The
inside of the SuperK tank, as seen from the bottom outer detector during the 2018
refurbishment works. The outer detector acts as a veto for any charged particles (e.g.
cosmic muons) entering the detector from the outside. Bottom right: Photo taken during
the re-filling of SuperK after the refurbishment works. One can see the large PMTs on the
walls even deep into the water because of the extreme purity. During normal detector
operation, the detector is filled with water to the top and optically isolated from the
outside (i.e. the inside is absolutely dark). Photos from [24].

To directly constrain the neutrino-flux energy spectrum at off-axis in the SuperK di-
rection, the ND280 detector is installed at roughly the same 2.5 degrees off-axis in the
direction of SuperK. It has a modular structure (Fig. 2.4) with three gas time projection
chambers (TPCs), two active targets composed of scintillator bars called fine grained
detectors (FGD), and on the upstream end a π0 detector (PØD, sandwich of scintillators,
thin lead sheets and fillable water container layers) to constrain the neutral current in-
teractions ν +N → π0 +N +X in water, which don’t produce a charged lepton. These
detectors are surrounded from all sides by electromagnetic calorimeters (ECAL) for mea-
suring the energy of electrons and gammas (mainly from π0 decay). It is fully enclosed
in a magnet inherited from the UA1 experiment at CERN, to measure the momenta and
charges of generated charged particles. In addition to constraining the flux parameters,
ND280 provides essential measurements of differential neutrino cross sections on various
materials installed in the detector.

2.1.3 Super-Kamiokande detector

Super-Kamiokande (SuperK, SK) [25] is a giant water Cherenkov detector containing
50,000 tons of ultra-pure water, 1000m underground in the Kamioka mine of the Gifu
mountains (Fig. 2.5). The detector walls are lined with 11,000 photo-multiplier tubes (PMTs)
which detect the faint Cherenkov light emitted by relativistic particles traveling through
the water. By reconstructing the Cherenkov ring from PMT charges and hit timings,
one can infer the momentum, direction and interaction point of the particle, as well as

ICRR, “Super-kamiokande refurbishment,” http://www-
sk.icrr.u-tokyo.ac. jp/sk/tankopen2018/index-e.html (2018). 

50 kton pure water
~ 11,000 PMTs

Inner detector

Outer detector

Photo 
multipliers
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FIG. 1. The upper (middle) panel shows the reconstructed
neutrino energy spectra for the SK samples containing
electron-like events in (anti)neutrino-mode beam running.
The uncertainty shown around the data points accounts for
statistical uncertainty. The uncertainty range is chosen to in-
clude all points for which the measured number of data events
is inside the 68% confidence interval of a Poisson distribution
centred at that point. The solid stacked chart shows the pre-
dicted number of events for the CP -conserving point �CP = 0
separated according to whether the event was from an oscil-
lated neutrino or antineutrino or from a background process.
The dashed lines show the total predicted number of events
for the two most extreme CP -violating cases. The lower ta-
ble shows the measured (expected for �CP = �⇡

2 ) number of
events in each electron-like SK sample. For all predictions,
normal ordering is assumed, and sin2 ✓23 and �m2

32 are at
their best-fit values. sin2 ✓13, sin

2 ✓12 and �m2
21 take the val-

ues indicated by external world average measurements [2].
The parameters accounting for systematic uncertainties take
their best-fit values after the near-detector fit.
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FIG. 2. Distribution of the particle identification (PID) pa-
rameter used to classify Cherenkov rings as electron-like and
muon-like. Events to the left of the blue line are classified as
electron-like and those to the right as muon-like. The filled
histograms show the expected number of single ring events
after neutrino oscillations. The PID algorithm uses prop-
erties of the light distribution such as the blurriness of the
Cherenkov ring to classify events. The insets show examples
of an electron-like (left) and muon-like (right) Cherenkov ring.

they decay. Identifying both muon and electron neutrino
interactions in both the neutrino- and antineutrino-mode
beams allows us to measure the probabilities for four os-
cillation channels: ⌫µ ! ⌫µ and ⌫̄µ ! ⌫̄µ, ⌫µ ! ⌫e and
⌫̄µ ! ⌫̄e.

We define a model of the expected number of neutrino
events as a function of kinematic variables measured in
our detectors with degrees of freedom for each of the os-
cillation parameters and for each source of systematic
uncertainty. Systematic uncertainties arise in the model-
ing of neutrino-nucleus interactions in the detector, the
modeling of the neutrino production, and the modeling
of the detector’s response to neutrino interaction prod-
ucts. Where possible, we constrain the model using ex-
ternal data. For example, the solar oscillation param-
eters, �m2

21 and sin2(✓12), which T2K is not able to
measure, are constrained using world average data [2].
Whilst we are sensitive to sin2 ✓13, we use the combina-
tion of measurements from the Daya Bay, RENO and
Double Chooz reactor experiments to constrain this pa-
rameter [2], as they make a much more precise mea-
surement than using T2K data alone (see upper panel
of Figure 3). We measure the oscillation parameters by
doing a marginal likelihood fit of this model to our near

Neutrino detection @ SuperK

Using GPS-synchronized 
clock, use beam bunch 
structure to separate 
neutrino events from J-PARC 
and natural background.
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FIG. 2. Reconstructed neutrino energy distributions at the
far detector for the ⌫µ CCQE (left) and ⌫̄µ CCQE (right)
enriched samples with total predicted event rate shown in red.
Ratios to the predictions under the no oscillation hypothesis
are shown in the bottom figures.

Like in the case of the CCQE-enriched samples, Erec for
the ⌫e CC1⇡+ sample is calculated from the outgoing
electron kinematics, except in this case the �++ mass is
assumed for the outgoing nucleon. Event yields for these
samples are compared to Monte-Carlo predictions in Ta-
ble II and their Erec distributions are shown in Figure 3.
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FIG. 3. Reconstructed neutrino energy distributions at the far
detector for the ⌫e CCQE (top left), ⌫e CC1⇡+ (bottom left)
and ⌫̄e CCQE (bottom right) enriched samples. Predictions
under the no oscillation hypothesis are shown in blue and
best-fit spectra in red.

Compared to previous T2K publications, the opti-
mized event selection criteria are expected to increase
the acceptance for (⌫ )

µ CCQE events by 15% with a 50%
reduction of the NC1⇡+ background; to increase the (⌫ )

e

CC events acceptance by 20% with similar purity to pre-
vious analyses; and to increase the ⌫e CC1⇡+ acceptance
by 33% with a 70% reduction in background caused by
particle misidentification. A summary of the systematic
uncertainties on the predicted event rates at SK is given
in Table I.

TABLE I. Systematic uncertainty on far detector event yields.

Source [%] ⌫µ ⌫e ⌫e⇡
+ ⌫̄µ ⌫̄e

ND280-unconstrained cross section 2.4 7.8 4.1 1.7 4.8

Flux & ND280-constrained cross sec. 3.3 3.2 4.1 2.7 2.9

SK detector systematics 2.4 2.9 13.3 2.0 3.8

Hadronic re-interactions 2.2 3.0 11.5 2.0 2.3

Total 5.1 8.8 18.4 4.3 7.1

Oscillation analysis.—A joint maximum-likelihood fit
to five far-detector samples constrains the oscillation pa-
rameters sin2✓23, �m2, sin2✓13 and �CP . Oscillation
probabilities are calculated using the full three-flavor os-
cillation formulas [39] including matter e↵ects, with a
crust density of ⇢ = 2.6 g/cm3 [40].
Priors for the flux and interaction cross-section param-

eters are obtained using results from a fit to the near-
detector data. Flat priors are chosen for sin2✓23, |�m2|
and �CP . The two mass orderings are each given a prob-
ability of 50%. In some fits a flat prior is also chosen
for sin22✓13; whereas, in fits that use reactor neutrino
measurements, we use a Gaussian prior of sin22✓13 =
0.0857±0.0046 [41]. The ✓12 and �m2

21 parameters have
negligible e↵ects and are constrained by Gaussian priors
from the PDG [41].
Using the same procedure as [10], we integrate the

product of the likelihood and the nuisance priors to ob-
tain the marginal likelihood, which does not depend on
the nuisance parameters. We define the marginal likeli-
hood ratio as �2�lnL = �2 ln(L/Lmax), where Lmax is
the maximum marginal likelihood.
Using this statistic, three independent analyses have

been developed. The first and second analyses provide
confidence intervals using a hybrid Bayesian-frequentist
approach [42]. The third analysis provides credible in-
tervals using the posterior probability distributions cal-
culated with a fully Bayesian Markov chain Monte Carlo
method [43]. This analysis also simultaneously fits both
near- and far-detector data, which validates the extrapo-
lation of nuisance parameters from the near to far detec-
tor. For all three analyses, the (⌫ )

µ samples are binned by
Erec. The first and third analyses bin the three (⌫ )

e sam-
ples in Erec and lepton angle, ✓, relative to the beam,
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FIG. 2. Reconstructed neutrino energy distributions at the
far detector for the ⌫µ CCQE (left) and ⌫̄µ CCQE (right)
enriched samples with total predicted event rate shown in red.
Ratios to the predictions under the no oscillation hypothesis
are shown in the bottom figures.

Like in the case of the CCQE-enriched samples, Erec for
the ⌫e CC1⇡+ sample is calculated from the outgoing
electron kinematics, except in this case the �++ mass is
assumed for the outgoing nucleon. Event yields for these
samples are compared to Monte-Carlo predictions in Ta-
ble II and their Erec distributions are shown in Figure 3.
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FIG. 3. Reconstructed neutrino energy distributions at the far
detector for the ⌫e CCQE (top left), ⌫e CC1⇡+ (bottom left)
and ⌫̄e CCQE (bottom right) enriched samples. Predictions
under the no oscillation hypothesis are shown in blue and
best-fit spectra in red.

Compared to previous T2K publications, the opti-
mized event selection criteria are expected to increase
the acceptance for (⌫ )

µ CCQE events by 15% with a 50%
reduction of the NC1⇡+ background; to increase the (⌫ )

e

CC events acceptance by 20% with similar purity to pre-
vious analyses; and to increase the ⌫e CC1⇡+ acceptance
by 33% with a 70% reduction in background caused by
particle misidentification. A summary of the systematic
uncertainties on the predicted event rates at SK is given
in Table I.

TABLE I. Systematic uncertainty on far detector event yields.

Source [%] ⌫µ ⌫e ⌫e⇡
+ ⌫̄µ ⌫̄e

ND280-unconstrained cross section 2.4 7.8 4.1 1.7 4.8

Flux & ND280-constrained cross sec. 3.3 3.2 4.1 2.7 2.9

SK detector systematics 2.4 2.9 13.3 2.0 3.8

Hadronic re-interactions 2.2 3.0 11.5 2.0 2.3

Total 5.1 8.8 18.4 4.3 7.1

Oscillation analysis.—A joint maximum-likelihood fit
to five far-detector samples constrains the oscillation pa-
rameters sin2✓23, �m2, sin2✓13 and �CP . Oscillation
probabilities are calculated using the full three-flavor os-
cillation formulas [39] including matter e↵ects, with a
crust density of ⇢ = 2.6 g/cm3 [40].
Priors for the flux and interaction cross-section param-

eters are obtained using results from a fit to the near-
detector data. Flat priors are chosen for sin2✓23, |�m2|
and �CP . The two mass orderings are each given a prob-
ability of 50%. In some fits a flat prior is also chosen
for sin22✓13; whereas, in fits that use reactor neutrino
measurements, we use a Gaussian prior of sin22✓13 =
0.0857±0.0046 [41]. The ✓12 and �m2

21 parameters have
negligible e↵ects and are constrained by Gaussian priors
from the PDG [41].
Using the same procedure as [10], we integrate the

product of the likelihood and the nuisance priors to ob-
tain the marginal likelihood, which does not depend on
the nuisance parameters. We define the marginal likeli-
hood ratio as �2�lnL = �2 ln(L/Lmax), where Lmax is
the maximum marginal likelihood.
Using this statistic, three independent analyses have

been developed. The first and second analyses provide
confidence intervals using a hybrid Bayesian-frequentist
approach [42]. The third analysis provides credible in-
tervals using the posterior probability distributions cal-
culated with a fully Bayesian Markov chain Monte Carlo
method [43]. This analysis also simultaneously fits both
near- and far-detector data, which validates the extrapo-
lation of nuisance parameters from the near to far detec-
tor. For all three analyses, the (⌫ )

µ samples are binned by
Erec. The first and third analyses bin the three (⌫ )

e sam-
ples in Erec and lepton angle, ✓, relative to the beam,

along with that for the single-ring selection for comparison.
Figure 25 shows the reconstructed energy distribution
for the final sample. Five νe CC1πþ candidates are
reconstructed in the data, while 3.1 events are expected
for the oscillation parameters of Table XIII.
Figure 26 shows the vertex distribution of the νe CC1πþ

candidate events in the SK tank coordinate system.

C. SK detector systematic uncertainties

This section discusses the estimation of the uncertainty
in the selection efficiency and background for the oscil-
lation samples that result from the modeling of the SK

detector. This topic has been covered in detail in previous
publications [27], but there have been a number of updates,
particularly related to the addition of the νe CC1πþ sample.
Control samples unrelated to the T2K beam are used to

assess the uncertainties. Cosmic-ray muon samples are
used to estimate uncertainties related to the FC, fiducial-
volume and decay-electron requirements, for the selections

of both ν
ð−Þ

e and ν
ð−Þ

μ CC candidates. The error from the
initial FC event selection is negligible. The uncertainty in
the fiducial volume is estimated to be 1% using the vertex
distribution of cosmic-ray muons which have been inde-
pendently determined to have stopped inside the ID.
The uncertainty due to the Michel electron tagging effi-
ciency is estimated by comparing cosmic-ray stopped
muon data with MC. The rate of falsely identified
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T2K Run 1-7. The histograms are stacked in that order.
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TABLE XIII. Values of the oscillation parameters used for the
Monte Carlo simulation at SK. The values of sin2 θ12, Δm2

21, and
sin2 θ13 are taken from Ref. [75], while all the other oscillation
parameters correspond to the most probable values obtained by
the Bayesian analysis in Ref. [27].

Parameter Value

sin2 2θ12 0.846
Δm2

21 7.53 × 10−5 eV2=c4

sin2 θ23 0.528
Δm2

32 2.509 × 10−3 eV2=c4

sin2 2θ13 0.085
δCP −1.601
Mass ordering Normal
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Figure 2.6: Left, middle: The reconstructed energy distribution of muon-like (left)
and electron-like events (middle) for each horn current configuration (neutrino- or anti-
neutrino mode) observed at SuperK [15]. The comparison to the unoscillated prediction,
shown on the lower half the left plot shows the beautiful oscillation curve. For electron-
like events one can also see a clear excess over the beam intrinsic νe events shown in blue.
Right: The bunch structure of the T2K neutrino beam, as seen by SuperK in the number
of observed neutrinos [27].

the particle type (electron-like or muon-like) from the blurriness of the ring (Fig. 2.7).
SuperK is best known for the discovery of neutrino oscillation in 1998 [3] from studying
the disappearance of νµ produced as tertiary cosmic rays in the atmosphere, but also
measures neutrinos from the sun, and is setting the most stringent limits on proton de-
cay for many decay channels. Unfortunately, no supernova has occurred nearby our solar
system recently, such that the associated outburst of neutrinos is yet to be observed by
SuperK. The predecessor experiment Kamiokande was awarded the Nobel prize for the
detection of 11 neutrinos from SN1987A [26]. In 2018, the tank was re-opened for the
first time in 12 years for refurbishment works necessary to give Super-K sensitivity to
detect stray neutrinos from past supernovae (supernova relic neutrinos, SRN)1.

SuperK also acts as the far detector for the T2K experiment, measuring the neutrinos
that have traveled for 295 km from Tokai to Kamioka. Most importantly it measures the
change of the flavor content of the neutrino beam beam, for which the excellent particle
identification performance and large target mass are essential. The T2K neutrino beam
is a pulsed beam, with currently one spill every 2.48 s, each consisting of 8 bunches about
15 ns wide. By precisely synchronizing the clocks of SuperK and the J-PARC neutrino
beamline using GPS, it is therefore possible to select neutrino events due to the T2K
neutrino beam from timing information alone (Fig. 2.6 right). At the T2K peak energy
the dominant interaction channel is charged current quasi-elastic interaction νµ + n →
µ + p. Since the direction of the neutrinos is known, it is possible to reconstruct the
neutrino energy from the momentum and relative angle of the charged lepton generated
by the interaction, assuming the target nucleon was at rest, and no other particle was
generated in association. Since SuperK is not enclosed in a magnetic field, it does not
have sensitivity to the sign of the lepton charges. For T2K it is still possible to measure
the oscillation probabilities for neutrinos and anti-neutrinos separately, because of the
separate neutrino and anti-neutrino beams with about 90% purity. Since the cross section
of neutrinos is about three times larger than that of anti-neutrinos, the purity in neutrino

1The author is very grateful to have had the chance to participate in this refurbishment work. The
view inside the inner detector is absolutely stunning.

Phys. Rev. D96, 092006 (2017)
↓ μ-like: crisp ↓ e-like: blurred

νμ create μ, νe create e in the tank: different ring fuzziness
→ neutrino flavor (νμ or νe)

Total amount of collected light: momentum of e,μ.
Timing distribution: angle of e,μ to neutrino beam
→ neutrino energy

Fit likelihood-based model to observed charges and 
timings to extract these observables from data.
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FIG. 2. Reconstructed neutrino energy distributions at the
far detector for the ⌫µ CCQE (left) and ⌫̄µ CCQE (right)
enriched samples with total predicted event rate shown in red.
Ratios to the predictions under the no oscillation hypothesis
are shown in the bottom figures.

Like in the case of the CCQE-enriched samples, Erec for
the ⌫e CC1⇡+ sample is calculated from the outgoing
electron kinematics, except in this case the �++ mass is
assumed for the outgoing nucleon. Event yields for these
samples are compared to Monte-Carlo predictions in Ta-
ble II and their Erec distributions are shown in Figure 3.
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FIG. 3. Reconstructed neutrino energy distributions at the far
detector for the ⌫e CCQE (top left), ⌫e CC1⇡+ (bottom left)
and ⌫̄e CCQE (bottom right) enriched samples. Predictions
under the no oscillation hypothesis are shown in blue and
best-fit spectra in red.

Compared to previous T2K publications, the opti-
mized event selection criteria are expected to increase
the acceptance for (⌫ )

µ CCQE events by 15% with a 50%
reduction of the NC1⇡+ background; to increase the (⌫ )

e

CC events acceptance by 20% with similar purity to pre-
vious analyses; and to increase the ⌫e CC1⇡+ acceptance
by 33% with a 70% reduction in background caused by
particle misidentification. A summary of the systematic
uncertainties on the predicted event rates at SK is given
in Table I.

TABLE I. Systematic uncertainty on far detector event yields.

Source [%] ⌫µ ⌫e ⌫e⇡
+ ⌫̄µ ⌫̄e

ND280-unconstrained cross section 2.4 7.8 4.1 1.7 4.8

Flux & ND280-constrained cross sec. 3.3 3.2 4.1 2.7 2.9

SK detector systematics 2.4 2.9 13.3 2.0 3.8

Hadronic re-interactions 2.2 3.0 11.5 2.0 2.3

Total 5.1 8.8 18.4 4.3 7.1

Oscillation analysis.—A joint maximum-likelihood fit
to five far-detector samples constrains the oscillation pa-
rameters sin2✓23, �m2, sin2✓13 and �CP . Oscillation
probabilities are calculated using the full three-flavor os-
cillation formulas [39] including matter e↵ects, with a
crust density of ⇢ = 2.6 g/cm3 [40].
Priors for the flux and interaction cross-section param-

eters are obtained using results from a fit to the near-
detector data. Flat priors are chosen for sin2✓23, |�m2|
and �CP . The two mass orderings are each given a prob-
ability of 50%. In some fits a flat prior is also chosen
for sin22✓13; whereas, in fits that use reactor neutrino
measurements, we use a Gaussian prior of sin22✓13 =
0.0857±0.0046 [41]. The ✓12 and �m2

21 parameters have
negligible e↵ects and are constrained by Gaussian priors
from the PDG [41].
Using the same procedure as [10], we integrate the

product of the likelihood and the nuisance priors to ob-
tain the marginal likelihood, which does not depend on
the nuisance parameters. We define the marginal likeli-
hood ratio as �2�lnL = �2 ln(L/Lmax), where Lmax is
the maximum marginal likelihood.
Using this statistic, three independent analyses have

been developed. The first and second analyses provide
confidence intervals using a hybrid Bayesian-frequentist
approach [42]. The third analysis provides credible in-
tervals using the posterior probability distributions cal-
culated with a fully Bayesian Markov chain Monte Carlo
method [43]. This analysis also simultaneously fits both
near- and far-detector data, which validates the extrapo-
lation of nuisance parameters from the near to far detec-
tor. For all three analyses, the (⌫ )

µ samples are binned by
Erec. The first and third analyses bin the three (⌫ )

e sam-
ples in Erec and lepton angle, ✓, relative to the beam,
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FIG. 2. Reconstructed neutrino energy distributions at the
far detector for the ⌫µ CCQE (left) and ⌫̄µ CCQE (right)
enriched samples with total predicted event rate shown in red.
Ratios to the predictions under the no oscillation hypothesis
are shown in the bottom figures.

Like in the case of the CCQE-enriched samples, Erec for
the ⌫e CC1⇡+ sample is calculated from the outgoing
electron kinematics, except in this case the �++ mass is
assumed for the outgoing nucleon. Event yields for these
samples are compared to Monte-Carlo predictions in Ta-
ble II and their Erec distributions are shown in Figure 3.
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FIG. 3. Reconstructed neutrino energy distributions at the far
detector for the ⌫e CCQE (top left), ⌫e CC1⇡+ (bottom left)
and ⌫̄e CCQE (bottom right) enriched samples. Predictions
under the no oscillation hypothesis are shown in blue and
best-fit spectra in red.

Compared to previous T2K publications, the opti-
mized event selection criteria are expected to increase
the acceptance for (⌫ )

µ CCQE events by 15% with a 50%
reduction of the NC1⇡+ background; to increase the (⌫ )

e

CC events acceptance by 20% with similar purity to pre-
vious analyses; and to increase the ⌫e CC1⇡+ acceptance
by 33% with a 70% reduction in background caused by
particle misidentification. A summary of the systematic
uncertainties on the predicted event rates at SK is given
in Table I.

TABLE I. Systematic uncertainty on far detector event yields.

Source [%] ⌫µ ⌫e ⌫e⇡
+ ⌫̄µ ⌫̄e

ND280-unconstrained cross section 2.4 7.8 4.1 1.7 4.8

Flux & ND280-constrained cross sec. 3.3 3.2 4.1 2.7 2.9

SK detector systematics 2.4 2.9 13.3 2.0 3.8

Hadronic re-interactions 2.2 3.0 11.5 2.0 2.3

Total 5.1 8.8 18.4 4.3 7.1

Oscillation analysis.—A joint maximum-likelihood fit
to five far-detector samples constrains the oscillation pa-
rameters sin2✓23, �m2, sin2✓13 and �CP . Oscillation
probabilities are calculated using the full three-flavor os-
cillation formulas [39] including matter e↵ects, with a
crust density of ⇢ = 2.6 g/cm3 [40].
Priors for the flux and interaction cross-section param-

eters are obtained using results from a fit to the near-
detector data. Flat priors are chosen for sin2✓23, |�m2|
and �CP . The two mass orderings are each given a prob-
ability of 50%. In some fits a flat prior is also chosen
for sin22✓13; whereas, in fits that use reactor neutrino
measurements, we use a Gaussian prior of sin22✓13 =
0.0857±0.0046 [41]. The ✓12 and �m2

21 parameters have
negligible e↵ects and are constrained by Gaussian priors
from the PDG [41].
Using the same procedure as [10], we integrate the

product of the likelihood and the nuisance priors to ob-
tain the marginal likelihood, which does not depend on
the nuisance parameters. We define the marginal likeli-
hood ratio as �2�lnL = �2 ln(L/Lmax), where Lmax is
the maximum marginal likelihood.
Using this statistic, three independent analyses have

been developed. The first and second analyses provide
confidence intervals using a hybrid Bayesian-frequentist
approach [42]. The third analysis provides credible in-
tervals using the posterior probability distributions cal-
culated with a fully Bayesian Markov chain Monte Carlo
method [43]. This analysis also simultaneously fits both
near- and far-detector data, which validates the extrapo-
lation of nuisance parameters from the near to far detec-
tor. For all three analyses, the (⌫ )

µ samples are binned by
Erec. The first and third analyses bin the three (⌫ )

e sam-
ples in Erec and lepton angle, ✓, relative to the beam,

along with that for the single-ring selection for comparison.
Figure 25 shows the reconstructed energy distribution
for the final sample. Five νe CC1πþ candidates are
reconstructed in the data, while 3.1 events are expected
for the oscillation parameters of Table XIII.
Figure 26 shows the vertex distribution of the νe CC1πþ

candidate events in the SK tank coordinate system.

C. SK detector systematic uncertainties

This section discusses the estimation of the uncertainty
in the selection efficiency and background for the oscil-
lation samples that result from the modeling of the SK

detector. This topic has been covered in detail in previous
publications [27], but there have been a number of updates,
particularly related to the addition of the νe CC1πþ sample.
Control samples unrelated to the T2K beam are used to

assess the uncertainties. Cosmic-ray muon samples are
used to estimate uncertainties related to the FC, fiducial-
volume and decay-electron requirements, for the selections

of both ν
ð−Þ

e and ν
ð−Þ

μ CC candidates. The error from the
initial FC event selection is negligible. The uncertainty in
the fiducial volume is estimated to be 1% using the vertex
distribution of cosmic-ray muons which have been inde-
pendently determined to have stopped inside the ID.
The uncertainty due to the Michel electron tagging effi-
ciency is estimated by comparing cosmic-ray stopped
muon data with MC. The rate of falsely identified
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FIG. 16. ΔT0 distribution of all FC, OD, and LE events within
$500 μs of the expected beam arrival time observed during
T2K Run 1-7. The histograms are stacked in that order.
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FIG. 17. ΔT0 distribution of all FC events observed during T2K
Run 1-7 zoomed in on the expected beam arrival time.
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FIG. 18. The PID likelihood distribution of the observed
ν-mode CC event samples after FCFV and single-ring cuts have
been applied. The data are shown as points with statistical error
bars and the shaded, stacked histograms are the MC predictions.
The expectation is based on the parameters of Table XIII.

TABLE XIII. Values of the oscillation parameters used for the
Monte Carlo simulation at SK. The values of sin2 θ12, Δm2

21, and
sin2 θ13 are taken from Ref. [75], while all the other oscillation
parameters correspond to the most probable values obtained by
the Bayesian analysis in Ref. [27].

Parameter Value

sin2 2θ12 0.846
Δm2

21 7.53 × 10−5 eV2=c4

sin2 θ23 0.528
Δm2

32 2.509 × 10−3 eV2=c4

sin2 2θ13 0.085
δCP −1.601
Mass ordering Normal
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Figure 2.6: Left, middle: The reconstructed energy distribution of muon-like (left)
and electron-like events (middle) for each horn current configuration (neutrino- or anti-
neutrino mode) observed at SuperK [15]. The comparison to the unoscillated prediction,
shown on the lower half the left plot shows the beautiful oscillation curve. For electron-
like events one can also see a clear excess over the beam intrinsic νe events shown in blue.
Right: The bunch structure of the T2K neutrino beam, as seen by SuperK in the number
of observed neutrinos [27].

the particle type (electron-like or muon-like) from the blurriness of the ring (Fig. 2.7).
SuperK is best known for the discovery of neutrino oscillation in 1998 [3] from studying
the disappearance of νµ produced as tertiary cosmic rays in the atmosphere, but also
measures neutrinos from the sun, and is setting the most stringent limits on proton de-
cay for many decay channels. Unfortunately, no supernova has occurred nearby our solar
system recently, such that the associated outburst of neutrinos is yet to be observed by
SuperK. The predecessor experiment Kamiokande was awarded the Nobel prize for the
detection of 11 neutrinos from SN1987A [26]. In 2018, the tank was re-opened for the
first time in 12 years for refurbishment works necessary to give Super-K sensitivity to
detect stray neutrinos from past supernovae (supernova relic neutrinos, SRN)1.

SuperK also acts as the far detector for the T2K experiment, measuring the neutrinos
that have traveled for 295 km from Tokai to Kamioka. Most importantly it measures the
change of the flavor content of the neutrino beam beam, for which the excellent particle
identification performance and large target mass are essential. The T2K neutrino beam
is a pulsed beam, with currently one spill every 2.48 s, each consisting of 8 bunches about
15 ns wide. By precisely synchronizing the clocks of SuperK and the J-PARC neutrino
beamline using GPS, it is therefore possible to select neutrino events due to the T2K
neutrino beam from timing information alone (Fig. 2.6 right). At the T2K peak energy
the dominant interaction channel is charged current quasi-elastic interaction νµ + n →
µ + p. Since the direction of the neutrinos is known, it is possible to reconstruct the
neutrino energy from the momentum and relative angle of the charged lepton generated
by the interaction, assuming the target nucleon was at rest, and no other particle was
generated in association. Since SuperK is not enclosed in a magnetic field, it does not
have sensitivity to the sign of the lepton charges. For T2K it is still possible to measure
the oscillation probabilities for neutrinos and anti-neutrinos separately, because of the
separate neutrino and anti-neutrino beams with about 90% purity. Since the cross section
of neutrinos is about three times larger than that of anti-neutrinos, the purity in neutrino

1The author is very grateful to have had the chance to participate in this refurbishment work. The
view inside the inner detector is absolutely stunning.
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↓ μ-like: crisp ↓ e-like: blurred

νμ create μ, νe create e in the tank: different ring fuzziness
→ neutrino flavor (νμ or νe)

Total amount of collected light: momentum of e,μ.
Timing distribution: angle of e,μ to neutrino beam
→ neutrino energy

Fit likelihood-based model to observed charges and 
timings to extract these observables from data.
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• Reconstruct neutrino energy from lepton 
momentum and angle w.r.t. neutrino beam


• Not magnetized, so the beam -modes 
are important. ND280 further constrains 
the wrong-sign background.
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Figure 7: A schematic view of the Super-Kamiokande Detector.

4.3 Far detector: Super-Kamiokande

The far detector, Super-Kamiokande, is located in the Kamioka Observatory, Institute

for Cosmic Ray Research (ICRR), University of Tokyo, which has been successfully taking
data since 1996. The detector is also used as a far detector for K2K experiment. It is a

50,000 ton water Čerenkov detector located at a depth of 2,700 meters water equivalent
in the Kamioka mine in Japan. Its performance and results in atmospheric neutrinos

or solar neutrinos have been well documented elsewhere[1, 5, 6]. A schematic view of
detector is shown as Fig 7. The detector cavity is 42 m in height and 39 m in diameter,
filled with 50,000 tons of pure water. There is an inner detector (ID), 33.8 m diameter and

36.2 m high, surrounded by an outer detector (OD) of approximately 2 m thick. The inner
detector has 11,146 50 cm φ photomultiplier tubes (PMTs), instrumented on all surfaces

of the inner detector on a 70.7 cm grid spacing. The outer detector is instrumented with
1,885 20 cm φ PMTs and used as an anti-counter to identify entering/exiting particles
to/from ID. The fiducial volume is defined as 2 m away from the ID wall, and the total

fiducial mass is 22,500 ton. Čerenkov rings produced by relativistic charged particles are
detected by ID PMT’s. The trigger threshold is recently achieved to be 4.3 MeV. The

pulse hight and timing information of the PMT’s are fitted to reconstruct the vertex,
direction, energy, and particle identification of the Čerenkov rings. A typical vertex,

angular and energy resolution for a 1 GeV µ is 30 cm, 3◦ and 3% for vertex, respectively.
The Čerenkov ring shapes, clear ring for muons and fuzzy ring for electrons, provides
good e/µ identification. A typical rejection factor to separate µ’s from e’s (or vice versa)

is about 100 for a single Čerenkov ring events at 1 GeV. The e’s and µ’s are further
separated by detecting decay electrons from the µ decays. A typical detection efficiency
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Figure 2.5: Left: Schematic overview of the SuperK detector (source [23]). Top right: The
inside of the SuperK tank, as seen from the bottom outer detector during the 2018
refurbishment works. The outer detector acts as a veto for any charged particles (e.g.
cosmic muons) entering the detector from the outside. Bottom right: Photo taken during
the re-filling of SuperK after the refurbishment works. One can see the large PMTs on the
walls even deep into the water because of the extreme purity. During normal detector
operation, the detector is filled with water to the top and optically isolated from the
outside (i.e. the inside is absolutely dark). Photos from [24].

To directly constrain the neutrino-flux energy spectrum at off-axis in the SuperK di-
rection, the ND280 detector is installed at roughly the same 2.5 degrees off-axis in the
direction of SuperK. It has a modular structure (Fig. 2.4) with three gas time projection
chambers (TPCs), two active targets composed of scintillator bars called fine grained
detectors (FGD), and on the upstream end a π0 detector (PØD, sandwich of scintillators,
thin lead sheets and fillable water container layers) to constrain the neutral current in-
teractions ν +N → π0 +N +X in water, which don’t produce a charged lepton. These
detectors are surrounded from all sides by electromagnetic calorimeters (ECAL) for mea-
suring the energy of electrons and gammas (mainly from π0 decay). It is fully enclosed
in a magnet inherited from the UA1 experiment at CERN, to measure the momenta and
charges of generated charged particles. In addition to constraining the flux parameters,
ND280 provides essential measurements of differential neutrino cross sections on various
materials installed in the detector.

2.1.3 Super-Kamiokande detector

Super-Kamiokande (SuperK, SK) [25] is a giant water Cherenkov detector containing
50,000 tons of ultra-pure water, 1000m underground in the Kamioka mine of the Gifu
mountains (Fig. 2.5). The detector walls are lined with 11,000 photo-multiplier tubes (PMTs)
which detect the faint Cherenkov light emitted by relativistic particles traveling through
the water. By reconstructing the Cherenkov ring from PMT charges and hit timings,
one can infer the momentum, direction and interaction point of the particle, as well as

ICRR, “Super-kamiokande refurbishment,” http://www-
sk.icrr.u-tokyo.ac. jp/sk/tankopen2018/index-e.html (2018). 
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1,885 20 cm φ PMTs and used as an anti-counter to identify entering/exiting particles
to/from ID. The fiducial volume is defined as 2 m away from the ID wall, and the total

fiducial mass is 22,500 ton. Čerenkov rings produced by relativistic charged particles are
detected by ID PMT’s. The trigger threshold is recently achieved to be 4.3 MeV. The

pulse hight and timing information of the PMT’s are fitted to reconstruct the vertex,
direction, energy, and particle identification of the Čerenkov rings. A typical vertex,

angular and energy resolution for a 1 GeV µ is 30 cm, 3◦ and 3% for vertex, respectively.
The Čerenkov ring shapes, clear ring for muons and fuzzy ring for electrons, provides
good e/µ identification. A typical rejection factor to separate µ’s from e’s (or vice versa)

is about 100 for a single Čerenkov ring events at 1 GeV. The e’s and µ’s are further
separated by detecting decay electrons from the µ decays. A typical detection efficiency

of decay electrons from cosmic stopping muons is roughly 80% which can be improved
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walls even deep into the water because of the extreme purity. During normal detector
operation, the detector is filled with water to the top and optically isolated from the
outside (i.e. the inside is absolutely dark). Photos from [24].

To directly constrain the neutrino-flux energy spectrum at off-axis in the SuperK di-
rection, the ND280 detector is installed at roughly the same 2.5 degrees off-axis in the
direction of SuperK. It has a modular structure (Fig. 2.4) with three gas time projection
chambers (TPCs), two active targets composed of scintillator bars called fine grained
detectors (FGD), and on the upstream end a π0 detector (PØD, sandwich of scintillators,
thin lead sheets and fillable water container layers) to constrain the neutral current in-
teractions ν +N → π0 +N +X in water, which don’t produce a charged lepton. These
detectors are surrounded from all sides by electromagnetic calorimeters (ECAL) for mea-
suring the energy of electrons and gammas (mainly from π0 decay). It is fully enclosed
in a magnet inherited from the UA1 experiment at CERN, to measure the momenta and
charges of generated charged particles. In addition to constraining the flux parameters,
ND280 provides essential measurements of differential neutrino cross sections on various
materials installed in the detector.

2.1.3 Super-Kamiokande detector

Super-Kamiokande (SuperK, SK) [25] is a giant water Cherenkov detector containing
50,000 tons of ultra-pure water, 1000m underground in the Kamioka mine of the Gifu
mountains (Fig. 2.5). The detector walls are lined with 11,000 photo-multiplier tubes (PMTs)
which detect the faint Cherenkov light emitted by relativistic particles traveling through
the water. By reconstructing the Cherenkov ring from PMT charges and hit timings,
one can infer the momentum, direction and interaction point of the particle, as well as
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for Cosmic Ray Research (ICRR), University of Tokyo, which has been successfully taking
data since 1996. The detector is also used as a far detector for K2K experiment. It is a

50,000 ton water Čerenkov detector located at a depth of 2,700 meters water equivalent
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detector has 11,146 50 cm φ photomultiplier tubes (PMTs), instrumented on all surfaces
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cosmic muons) entering the detector from the outside. Bottom right: Photo taken during
the re-filling of SuperK after the refurbishment works. One can see the large PMTs on the
walls even deep into the water because of the extreme purity. During normal detector
operation, the detector is filled with water to the top and optically isolated from the
outside (i.e. the inside is absolutely dark). Photos from [24].

To directly constrain the neutrino-flux energy spectrum at off-axis in the SuperK di-
rection, the ND280 detector is installed at roughly the same 2.5 degrees off-axis in the
direction of SuperK. It has a modular structure (Fig. 2.4) with three gas time projection
chambers (TPCs), two active targets composed of scintillator bars called fine grained
detectors (FGD), and on the upstream end a π0 detector (PØD, sandwich of scintillators,
thin lead sheets and fillable water container layers) to constrain the neutral current in-
teractions ν +N → π0 +N +X in water, which don’t produce a charged lepton. These
detectors are surrounded from all sides by electromagnetic calorimeters (ECAL) for mea-
suring the energy of electrons and gammas (mainly from π0 decay). It is fully enclosed
in a magnet inherited from the UA1 experiment at CERN, to measure the momenta and
charges of generated charged particles. In addition to constraining the flux parameters,
ND280 provides essential measurements of differential neutrino cross sections on various
materials installed in the detector.

2.1.3 Super-Kamiokande detector

Super-Kamiokande (SuperK, SK) [25] is a giant water Cherenkov detector containing
50,000 tons of ultra-pure water, 1000m underground in the Kamioka mine of the Gifu
mountains (Fig. 2.5). The detector walls are lined with 11,000 photo-multiplier tubes (PMTs)
which detect the faint Cherenkov light emitted by relativistic particles traveling through
the water. By reconstructing the Cherenkov ring from PMT charges and hit timings,
one can infer the momentum, direction and interaction point of the particle, as well as

ICRR, “Super-kamiokande refurbishment,” http://www-
sk.icrr.u-tokyo.ac. jp/sk/tankopen2018/index-e.html (2018). 
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Gadolinium loading has started 
for improved neutron tagging!
Photos: “Super Kamiokande refurbishment” ICRR (2018)

– the far detector

https://www.nature.com/articles/s41586-020-2177-0
http://www-sk.icrr.u-tokyo.ac.jp/sk/tankopen2018/index-e.html
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• Beam monitors + hadron 
production experiments  
→ neutrino flux


• ND280 measurements  
+ interaction model 
+ external constraints 
→ unoscillated flux × xsec


• 5 samples at SK 
→  disappearance + 
      appearance
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Atmospheric ν Accelerator ν

SK

Thesis: a joint fit between 
SK atmospheric and T2K accelerator ν
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Figure 61: Bi-event plot of FHC vs. RHC e-like events (left, leading sin �CP dependence) and
e-like events from FHC+RHC above vs. below 550MeV (right, leading cos �CP dependence)
against the predicted number of events for various oscillation parameters. The error bars repre-
sent the 68% confidence interval for the mean of a poisson distribution given the observed data
point (calculated using the quantile function of a gamma distribution with unit shape param-
eter). The underlaid contour contains the predicted number of event points for 68% of toys,
throwing systematic parameters around the BANFF best-fit, with osc. params set to the data
best-fit values. The triangle shows the predicted number of events with both osc. and syst.
params at their data best-fit values.
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Figure 62: Bi-event plot of e-like vs. µ-like events (left, sin2 ✓23 and sin2 2✓23 dependence) and
µ-like events from FHC+RHC above vs. below 600MeV (right, �m
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sent the 68% confidence interval for the mean of a poisson distribution given the observed data
point (calculated using the quantile function of a gamma distribution with unit shape param-
eter). The underlaid contour contains the predicted number of event points for 68% of toys,
throwing systematic parameters around the BANFF best-fit, with osc. params set to the data
best-fit values. The triangle shows the predicted number of events with both osc. and syst.
params at their data best-fit values.

63

CP and mass ordering sensitivity
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SK Atmospheric T2K Accelerator

• Anti-correlated change of  
appearance probability → 


• For large changes also weakly 
sensitive to mass ordering

νe, ν̄e
δCP

  

6Atmospheric neutrino oscillations
Matter effects

Presence of a resonance driven by θ13 induced matter effects between 

2 and 10 GeV
● Only for ν in NH and ν in IH → sensitivity to the mass hierarchy
● Size of the effect depends on sin2(θ23) → sensitive to θ23 octant 
● MH sensitivity increases with larger statistics, improved ability to 

separate interactions of ν and ν and constraint on sin2(θ23)
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corresponds to neutrinos crossing both the outer core and
mantle regions of the Earth. For shallower zenith angles the
distortion in the νμ survival probability and the resonant
feature in the νe appearance probability are caused by
matter effects in the mantle region. Note that none of these
features appear in the antineutrino plots. If the inverted
hierarchy were assumed instead, the roles of neutrinos and
antineutrinos switch completely and the discontinuities and
resonance effects appear with nearly the same magnitude
but in the antinuetrino plots.

III. THE SUPER-KAMIOKANDE DETECTOR

Super-Kamiokande is a cylindrical 50-kiloton water
Cherenkov detector, located inside the Kamioka mine in
Gifu, Japan. An inner detector (ID) volume is viewed by
more than 11,000 inward-facing 20-inch photomultiplier
tubes (PMTs) and contains a 32-kiloton target volume. The
outer detector, which is defined by the two meter-thick
cylindrical shell surrounding the ID, is lined with reflective
Tyvek to increase light collection to 1,885 outward-facing
eight-inch PMTs mounted on the shell’s inner surface.
Since the start of operations in 1996, Super-Kamiokande
has gone through four data taking periods, SK-I, -II, -III,
and -IV.
Though the basic configuration the detector is similar

across the phases there are a few important differences. At
the start of the SK-IV period in 2008 the front-end
electronics were upgraded to a system with an ASIC based

on a high-speed charge-to-time converter [13]. The new
system allows for the loss-less data acquisition of all PMT
hits above threshold and has improved the tagging effi-
ciency of delayed Michel electrons from muon decay from
73% in SK-III to 88%.
Further, following a period of detector maintenance and

upgrades at the end of SK-I (1996-2001), the implosion of a
single PMT at the bottom of the detector on November 12,
2001, created a shock wave and chain reaction that went on
to destroy 6,665 ID and 1,027 OD PMTs. The detector was
rebuilt the following year with nearly half of the photo-
cathode coverage (19%) in the ID (5,137 PMTs) and the
full complement of OD PMTs for the SK-II period (2002-
2005). Since that time all ID PMTs have been encased in
fiber-reinforced plastic shells with 1.0 cm thick acrylic
covers to prevent further chain reactions. This resulted in an
increased threshold of 7.0 MeV in SK-II compared to
5.0 MeV in SK-I. In 2006 the detector underwent a second
upgrade in which the remaining ID PMTs were replaced
and additional optical barriers were added to the top and
bottom portions of the OD to improve separation with its
barrel region. Both SK-III (2006-2008) and SK-IV (2008-
present) were operated with the full 40% photocathode
coverage in the ID.
Neutrino interactions which produce charged particles

above the Cherenkov threshold in water are reconstructed
based on the observed ring patterns projected on the
detector walls. Photomultiplier timing information is used
to reconstruct the initial interaction vertex after correcting
for the photon time of flight. Particles are divided into two
broad categories based upon their Cherenkov ring pattern
and opening angle. Rings from particles which produce
electromagnetic showers, such as electrons and photons,
tend to have rough edges due to the many overlapping rings
from particles in the shower and are labeled e-like or
showering. Muons and charged pions on the other hand,
which do not form showers, produce Cherenkov rings with
crisp edges. Such rings are labeled μ-like or non-shower-
ing. The event reconstruction assigns momenta to each
reconstructed ring in an event based on the observed
number of photons in the ring. Particles with higher
momenta produce brighter Cherenkov rings. Similarly,
particle directions are inferred based on the shape of their
ring pattern. Since the neutrino itself is unobserved, energy
and direction variables for use in the oscillation analysis
described below are based on the properties of their
daughter particles.
More detailed descriptions of the detector and its

electronics can be found in [13–15].

A. Detector calibration

Over the 20 year history of the experiment changes in the
run conditions have been unavoidable. Seasonal changes in
precipitation and the expansion of underground activities at
the Kamioka site have variable impact on the quality and

FIG. 1. The propagation of two neutrinos through the simpli-
fied model of the Earth used in the analysis below. Both νA and νB
are produced in the atmosphere. νA then experiences 6 oscillation
steps (air → crust → mantle → outer core → mantle → crust),
while νB experiences 4 oscillation steps (air → crust → mantle →
crust).
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• Resonance in Earth mantle & 
core sensitive to mass ordering


• Weakly sensitive to  via 
normalization of sub-GeV -like

δCP
e

degenerate
SK + T2K Joint fit

Normal

Inverted Degenerate

sin δCP

When combined, can resolve degeneracy and have better CP violation sensitivity!



10

SK+T2K work in progress

FHC mode (mostly ⌫) RHC mode (mostly ⌫ )
Single Ring e-like 0 decay e� Single Ring e-like 0 decay e�

Single Ring µ-like 1 decay e� Single Ring µ-like 1 decay e�

Single Ring e-like 1 decay e�

Table 2: List of T2K samples

3.2 True energy distribution173

The SK atmospheric samples cover a wide range of neutrino energies. Figure 2 shows the true174

neutrino energy distributions of the di↵erent atmospheric samples. Neutrino oscillations are175

taken into account with true values set to the Asimov set A (described in table 3) commonly176

used in T2K analysis.177
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Figure 2: Neutrino energy distribution of the atmospheric samples, normalized to the 3244.4
days of SK-IV livetime.

The atmospheric samples cover a larger range of energies and more topologies than the T2K178

beam samples, but some of the sub-GeV samples (table 1) look similar in terms selections to the179

T2K ones (table 2). Figure 3 shows the area-normalized neutrino energy distributions of the 3180

beam FHC single-ring events and their atmospheric counterparts. It can be seen that although181

they correspond to similar neutrino energies, the corresponding samples from the 2 experiments182

do not have the same spectra. This is due partly to flux di↵erences, but also to the fact that183

the event selection criteria are similar but not identical between the 2 experiments as discussed184

in [3].185

3.3 Breakdown of the di↵erent samples by interaction modes (Dan)186

Mainly plots. That’s a number of them, but seems relevant for discussion of interaction model.187

Probably one plot per sample, as a function of variable of interest (Erec for T2K and p for SK188

atm). Could alternatively put only plots for representative atm samples here, and the remaining189

8

← 
CCQE-dominant 
Sub-GeV overlapped 
with T2K samples

SK + T2K Joint fit

Atmospheric ν Accelerator ν

SK

Systematic 
correlations

• Overlapped true energy region 
→ coherent interaction model 
     to capture correlations  
→ Bonus: ND constraint 
     for atmospherics!


• Same Super-K detector 
used by both experiments 
→ estimate contribution from 
     detector syst. correlations

ND constraint on 
flux × xsec

Atmospheric -like samplesμ
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• Asimov sensitivity (roughly the expectation of shown ) for rejecting the CP conservation hypothesis for various values of true 
dcp (i.e. for an actual experiment one would obtain a single data-point only). Here the best  over the four CP conserving points 
is is compared against the best  over  and the two mass orderings.


• For true  in NO and true  in IO, T2K cannot exclude CP conservation due to MO-degeneracy. SK’s MO-
sensitivity is able to break this degeneracy.


• Note: the -axis values cannot be directly translated to a p-value (i.e. it is not equal to the square of sigmas).
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CP violation sensitivity

• Both experiments complement 
each other in many parameters, 
 
effect of degeneracy-resolution 
is quite nice


• At current statistics, 
contribution from systematic 
correlations on sensitivity 
seems limited


• This kind of analysis very 
important for future HyperK 
experiment



Efficient statistics for 
future neutrino oscillation 

experiments

personal work

hopefully useful for a wider group than just our experiment



Inference
• Toy example: threw coin  times, 

got heads  times, 
 
what is the probability  of this coin to give 
heads?


• Probability distribution to generate the data  
 

seen as function of  this is called the likelihood  



• Best agreement = maximum likelihood at 
 

better: interval over  values to account for 
statistical fluctuations

n = 100
x = 40

θ

p(x ∣ θ) = (n
x) θx(1 − θ)n−x

θ
L(θ ∣ x) := p(x ∣ θ)

̂θ = x /n
θ
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θ



Confidence intervals
• Confidence interval: 

Whatever the true value is, the interval would 
cover it with at least 68%, 90%, …


• Define . 
Small  in general means 
better agreement with data.


• Study how much worse than at the minimum we 
are: 


• Strategy: create a confidence interval using  
 
Choose range of  such that  
with some critical value 

χ2(θ) := − 2 log L(θ ∣ x)
χ2(θ)

Δχ2(θ) := χ2(θ) − χ2
min

Δχ2

θ Δχ2(θ) < Δχ2
c

Δχ2
c
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• In the presence of nuisance parameters , 
choose e.g. the best agreement  
 

η

χ2
p(θ) = min

η
χ2(θ, η)



Wilk’s theorem
• Under certain conditions


• regardless of 


• regardless of  
(in the case of profiling also regardless of 
true nuisance )


• regardless of 


• in  limit,  evaluated at the true 
value 
becomes a chi-squared distribution, 
i.e.  where  is 
dimension of 


• So can just construct interval by choosing 
e.g.  for a 68% interval if .

p(x ∣ θ)
θtrue

ηtrue

n
n → ∞ Δχ2

p(Δχ2(θtrue)) = p(χ2
k ) k

θ

Δχ2(θ) < 1 k = 1
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Wilk’s theorem
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Can we use Wilk’s 
theorem for leptonic CP 

violation search?
• Small amount of data           → no !  

-mode: 119, -mode: 16


• Parameters with boundaries → no !  
e.g. 


• (approximate) degeneracies → no !  
e.g. mostly sensitive to  
= degenerate in  
 
In fact an 8-fold degeneracy exists.


•  contains (effectively) discrete 
parameters / hypotheses  
here: mass ordering             → no !

ν ν

−1 ≤ sin δ ≤ 1

sin δ
±sgn cos δ

θ

20
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Feldman-Cousins 
Neyman-Construction using  as ordering principleΔχ2

• generate many toy experiments 
at each 


• compute  for all to 
obtain its distribution


• get “critical values” s.t. 
 

basically the percentiles as 
function of 


• construct confidence interval by 

θtrue

Δχ2(θtrue)

P(Δχ2
true < Δχ2

c ∣ θtrue) = 68 % , 90 % , ⋯

θtrue

Δχ2(θ) < Δχ2
c (θ)

25
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θtrue = − π/2
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Critical values for δCP
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Problem
• Current experiments (T2K) started excluding  ranges at  CL. 

Future experiments (HK, DUNE) aiming for  discovery of CP violation in leptons.


• By definition, to obtain high confidence-level critical values in Feldman-Cousins method, 
need many toy experiments: 
 

 
 
 

 
each fit is complicated with  parameters often having non-linear responses,  
so this is not very practical.


• Now even if we produce say 100M toy experiments to get  critical values, 
most of the toy experiments will be around  and “wasted”.


• Can we do better? Can we specifically generate toys that matter at high CL?

δCP 3σ
5σ

3σ : ≫ 370
4σ : ≫ 16k
5σ : ≫ 1.7M

,(100)

5σ
1σ ∼ 2σ
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Naive attempt
• Let’s preferentially sample all low-probability toys 

“increase the temperature  ” 
 
e.g.  

and weight each toy as 


• So e.g. for each bin , sample toys with 
 error instead of usual Poisson error 


• This gives you toys with larger values of 


• But! almost all of them have small , because 
there are  directions in which we can increase the 
temperature, but only  (non-linear) directions of them 
contribute to a change of , the rest will only 
increase 


• In fact, because now we have to weight each toy  with 
, any variation in  for the same value of  will 

actually “cost” us toy statistics, so this is even worse 
than before, not only at low , but also at high 

T

psmpl(x) := [p(x ∣ θtrue)]1/T

w(x) = p(x ∣ θtrue)
psmpl(x)

i
T λi λi

χ2

Δχ2(θtrue)
Nbins

k
Δχ2(θ)

χ2
min

x
w(x) w(x) Δχ2

Δχ2 Δχ2
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Weights for same  
vary over many orders 

of magnitude

Δχ2
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Worse than 
standard 
Feldman-Cousins 
even at high !Δχ2

Worse 
at low χ2

Better at 
high χ2
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The solution: mixture of many θ
• What does high  mean?  
→ there exists a different value  from which one 
is more likely to obtain the data  than from 


• Just use all toys sampled from many  at once  

 

(mixture model)


• As long as  are close enough, there will always 
be some  close enough to , such that the 
weights  will be bounded from above resulting in 
numerical stability (at least for the  values we 
care about).  
 

 
 
with 

Δχ2(θtrue) ̂θ
x θtrue

θsmpl

psmpl(x) = p(x ∣ {θ}) := 1
S

S

∑
s=1

p(x ∣ θs)

θs
θs

̂θ
w

Δχ2

w(x) ≲ S exp[− 1
2 Δχ2(θtarget)]

w(x) =
p(x ∣ θtarget)
p(x ∣ {θ})
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Δχ2(θtarget)

The solution: mixture of many θ
• What does high  mean?  
→ there exists a different value  from which one 
is more likely to obtain the data  than from 
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Δχ2(θtarget)

The solution: mixture of many θ
• What does high  mean?  
→ there exists a different value  from which one 
is more likely to obtain the data  than from 


• Just use all toys sampled from many  at once  

 

(mixture model)


• As long as  are close enough, there will always 
be some  close enough to , such that the 
weights  will be bounded from above resulting in 
numerical stability (at least for the  values we 
care about).  
 

 
 
with 

Δχ2(θtrue) ̂θ
x θtrue

θsmpl

psmpl(x) = p(x ∣ {θ}) := 1
S

S

∑
s=1

p(x ∣ θs)

θs
θs

̂θ
w

Δχ2

w(x) ≲ S exp[− 1
2 Δχ2(θtarget)]

w(x) =
p(x ∣ θtarget)
p(x ∣ {θ})

Exponential 
enhancement!

dNtoys(x ∣ {θ})
dNtoys(x ∣ θtarget)

=
∑s p(x ∣ θs)
p(x ∣ θtarget)

≥ p(x ∣ ̂θ)
p(x ∣ θtarget)

= exp[ 1
2 Δχ2

0]

∀x, Δχ2(θtarget) ≥ Δχ2
0

all toys will be sampled more often, 
high-  exponentially more oftenΔχ2

1σ 2σ 3σ 4σ 5σ



Small variance of weights for 
each  

by construction
Δχ2

Δχ2(θtarget)
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The solution: mixture of many θ
• What does high  mean?  
→ there exists a different value  from which one 
is more likely to obtain the data  than from 


• Just use all toys sampled from many  at once  

 

(mixture model)


• As long as  are close enough, there will always 
be some  close enough to , such that the 
weights  will be bounded from above resulting in 
numerical stability (at least for the  values we 
care about).  
 

 
 
with 

Δχ2(θtrue) ̂θ
x θtrue

θsmpl

psmpl(x) = p(x ∣ {θ}) := 1
S

S

∑
s=1

p(x ∣ θs)

θs
θs

̂θ
w

Δχ2

w(x) ≲ S exp[− 1
2 Δχ2(θtarget)]

w(x) =
p(x ∣ θtarget)
p(x ∣ {θ})



Works very well both at low and 
high Δχ2

Δχ2(θtarget)
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The solution: mixture of many θ
• What does high  mean?  
→ there exists a different value  from which one 
is more likely to obtain the data  than from 


• Just use all toys sampled from many  at once  

 

(mixture model)


• As long as  are close enough, there will always 
be some  close enough to , such that the 
weights  will be bounded from above resulting in 
numerical stability (at least for the  values we 
care about).  
 

 
 
with 

Δχ2(θtrue) ̂θ
x θtrue

θsmpl

psmpl(x) = p(x ∣ {θ}) := 1
S

S

∑
s=1

p(x ∣ θs)

θs
θs

̂θ
w

Δχ2

w(x) ≲ S exp[− 1
2 Δχ2(θtarget)]

w(x) =
p(x ∣ θtarget)
p(x ∣ {θ})

1σ 2σ 3σ 4σ 5σ



Critical value 
distributions
• The same toys are used to 

produce both results!


• Errors for critical values 
significantly reduced (e.g. )


•  were impossible to 
estimate before, now easy


• Bonus: can now interpolate 
critical values for free!

3σ

5σ
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Critical value 
distributions
• The same toys are used to 

produce both results!


• Errors for critical values 
significantly reduced (e.g. )


•  were impossible to 
estimate before, now easy


• Bonus: can now interpolate 
critical values for free!

3σ

5σ
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Nuisance parameters
• Feldman-Cousins paper itself does not deal with presence of nuisance parameters, various approaches exist


• As prior distribution (prior Highland-Cousins) 
Just define  

and use this both for fitting and throwing toys, i.e. fit by marginalizing.  
In most cases using profile likelihood is similar to marginal likelihood so should be ok for using in fit too (with constraint 
term corresponding to prior). 
 
Performance improvement same. 
 
If systematics are not well constrained by data, 
can also compute toy weight at fixed  instead of marginalizing, which is much cheaper.  

i.e.  instead of 


• For prior unconstrained parameters and parameters that get very constrained by the data this is not ideal. Use posterior 
Highland-Cousins conditioned on the true value of the parameter of interest : 

i.e. define toy distribution by  

and fit by profiling. Here the constraint term should be thrown for each toy experiment (included in ) as though it is 
external data. 
 
In this case we get the same performance improvement if for fixed  the -posterior is sufficiently gaussian.


• I do not know yet, if one can prove any properties if -posterior is not sufficiently gaussian, and method may not be directly 
applicable. However, in this case the Feldman-Cousins method will be dependent on the nuisance parameter treatment 
choice (similar to priors in Bayesian analysis) so more careful analysis would be necessary anyway. If the number of such 
non-gaussian nuisances is small, they could be included as part of the parameters of interest.

p(x ∣ θ) := ∫ dη p(η) p(x ∣ θ, η)

η

w(x, ηtrue) =
p(x ∣ θtarget, ηtrue)
p(x ∣ {θ}, ηtrue)

w(x) =
p(x ∣ θtarget)
p(x ∣ {θ})

θ
p(x ∣ θ) := ∫ dη p(η ∣ xdata, θ) p(x ∣ θ, η)

x

θ η

η
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Summary
• Neutrino oscillation experiments aiming to discover 

CP violation in leptonic sector


• Frequentist analysis of neutrino oscillation requires 
expensive 
Feldman-Cousins procedure because Wilk’s theorem 
cannot be used


• Proposed a simple technique that efficiently generates 
high-  toys, resulting in exponential reduction of 
uncertainty for high-  
 
+ provides correct interpolation of critical values for free


• Hopefully this can help many experiments, not only 
-osc.


• Exploring various other techniques as well, hopefully 
Feldman-Cousins will not be considered an expensive 
calculation soon

Δχ2

Δχ2

ν

50
to be posted on arXiv soon!

Similar to “multiple histogram reweighting” in 
statistical mechanics / lattice QCD calculations 
see e.g. Kari Rummukainen, “Monte Carlo 
simulation methods” lecture notes on reweighting


I think some Higgs p-value studies (by 
K. Cranmer’s group) also used similar methods.

“Simply use a mixture of 
toys generated at many  
values and reweight”

θ

https://www.mv.helsinki.fi/home/rummukai/lectures/montecarlo_oulu/lectures/mc_notes4.pdf

