Efficient statistics for future
neutrino oscillation experiments

2022-06-19, Erice School of Subnuclear Physics
Lukas Berns, Tohoku University

first few slides are with T2K and SK Collaborations




experiment

Super-Kamiokande

Mt. Noguchi-Goro
2,924m

Mt. Ilkeno-Yama
1,360 m
1,700 m below sea level

Neutrino Beam —
295 km
U, I/Iu, I/ﬂ I/Iu, I/M, Dﬂ’ Uﬂ’ I/ﬂ, I/Iu, I/Iu

e Study oscillation of neutrino beam from J-PARC accelerator
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e ~500 collaborators from institutions in 12 countries
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( interaction ) ( Prayagauom)
For neutrinos flavor basis # Hamiltonian basis.

U—OSCI I IatIOn — Flavor (v, | v, | v,) oscillates over L x Am” / E,

amplitude controlled by (PMNS) mixing matrix U:

atmospheric reactor solar
1 0 0 C13 0 8136_2501D cio  S19 O )
Ci; = COSU;;
U = 0 C23 S93 0 1 0 —S12  C12 0 8; — din 9;
0 —S93 (a3 —81367’5013 0 C13 0 0 1
Open questions' normal ordering (NO) inverted ordering (10)

e value of §cp — if sin ocp # 0, CP violation

e sign of Am322 (mass ordering)

o iS 923 maximal? octant? (i.e. 6,5 < % or 0,5 > f)

[

Credit: JUNO Collaboration / JGU-Mainz

Super-Kamiokande

Mt. Noguchi-Goro
2,924 m

Mt. Ilkeno-Yama
1,360 m

For ¢p look for v/

1,700 m below sea level

difference of v, = U, Neutrino Beam —
appearance \
VgV, Uﬂ, VM Uﬂ, VM, I/ﬂ, I/M, I/M, UM, UM
ye’ M’ M /’t, Iu! Ma //t’ //l’ M, yﬂ 3
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Neutrino beam

e 30 GeV protons produce

,K In 90 cm graphite target

 Three magnetic horns
selectively focus

o+, K+ or -, K- to produce
v, oru, beam (decay in-flight).
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The near detectors
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INGRID on-axis detector

e |ron-scintillator
sandwich detectors
monitor neutrino beam
direction and intensity

UA1 Magnet Yoke

Downstream
] ECAL

Barrel ECAL

ND280 off-axis detector

Active scintillator +
passive water targets

Tracking with time
projection chambers

Magnetized for charge and
momentum measurement
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INGRID

WAGASCI + BabyMIND

e |atest addition at
intermediate 1.5° off-axis flux

* Water target with
cuboid lattice scintillators
for high angle acceptance

e Compact magnetized iron
muon range detector

e First xsec meas. published:
PTEP, ptab014 (2021) 11\,



https://academic.oup.com/ptep/advance-article/doi/10.1093/ptep/ptab014/6156643
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50 kt pure water
~11,000 20 inch PMTs

Gadolinium loading has started
for improved neutron tagging!

Number of events

_\_j\ Su perK — the far detector

Adapted from Nature 580, 339-344 (2020)
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e/n PID discriminator

Good /e PID from ring shape

Reconstruct neutrino energy from lepton
momentum and angle w.r.t. neutrino beam

Not magnetized, so the beam v/U-modes
are important. ND280 further constrains
the wrong-sign background.


https://www.nature.com/articles/s41586-020-2177-0
http://www-sk.icrr.u-tokyo.ac.jp/sk/tankopen2018/index-e.html

Analysis
strategy

¢ Beam monitors + hadron
production experiments
— neutrino flux

e ND280 measurements
+ Interaction model
+ external constraints

— unoscillated flux x xsec

. e 5 samples at SK
| vy, disappearance +

v, appearance
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Thesis: a joint fit between
SK atmospheric and T2K accelerator v
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CP and mass ordering sensitivity
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Event Rate (da

Atmospheric /i-like samples

0.6 B -
—— Sub-GeV (v, +v,)
B —— Multi-GeV (v +v,)
—— Multi-Ring (v, +v )
PC Stop
L PC Thru
oaf D b
. pmu Thru n
i L
I CCQE-dominant
0.2 Sub-GeV overlapped -
! qilL,]Lwith T2K samples
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Atmospheric v

Systematic
correlations

e Overlapped true energy region
— coherent interaction model
to capture correlations
— Bonus: ND constraint
for atmospherics!

e Same Super-K detector
used by both experiments
— estimate contribution from
detector syst. correlations
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x*(best CP conserv.) — x?(best d.p, MO)

from Neutrino 2022

Sensitivities

SK+T2K Preliminary Sensitivity

o e L B B L i =
4 — SK+T2K — T2K

— SK (+ND)
3.5

CP violation sensitivity

b IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|III

True 6CP

Normal ordering
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* Both experiments complement
each other in many parameters,

effect of degeneracy-resolution
IS quite nice

e At current statistics,
contribution from systematic
correlations on sensitivity
seems limited

e This kind of analysis very
important for future HyperK
experiment



Efficient statistics for
future neutrino oscillation
experiments

personal work



Inference

e Toy example: threw coin n = 100 times,
got heads x = 40 times,

what is the probability 8 of this coin to give
heads?

* Probability distribution to generate the data
per | 0) = (}) 01 -0y

seen as function of @ this is called the likelihood

L | x) :==px|0)

—2log L(0 | x)

* Best agreement = maximum likelihood at
0= x/n
better: interval over @ values to account for
statistical fluctuations
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Confidence intervals

Confidence interval:
Whatever the true value is, the interval would
cover it with at least 68%, 90%,, ...

Define y*(0) := — 2log L(8 | x).
Small y*(0) in general means
better agreement with data.

Study how much worse than at the minimum we
are: Ay*(0) := y*(0) — x=.

Strategy: create a confidence interval using A)(z

Choose range of 6 such that Ay?(6) < A;(f
with some critical value A)(Cz
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—2log L(0 | x)
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Wilk’s theorem

e Under certain conditions
e regardless of p(x | 0)

e regardless of O,
(in the case of profiling also regardless of

true nuisance #,,.)
e regardless of n

e inn — oo limit, Ay? evaluated at the true
value
becomes a chi-squared distribution,

i.e. p(A)(z(Qtrue)) = p(x?) where k is
dimension of

e So can just construct interval by choosing
e.g. Ay’(0) < 1 for a 68% interval if k = 1.
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Wilk’s theorem

e Under certain conditions
e regardless of p(x | 0)

e regardless of O,
(in the case of profiling also regardless of

true nuisance #,,.)
e regardless of n
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Wilk’s theorem

e Under certain conditions
e regardless of p(x | 0)

e regardless of O,
(in the case of profiling also regardless of

true nuisance #,,.)
e regardless of n

e inn — oo limit, Ay? evaluated at the true
value
becomes a chi-squared distribution,
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dimension of
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Can we use Wilk’s
theorem for leptonic CP
violation search?

. _’ lm 2\
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Can we use Wilk’s

theorem for leptonic CP

violation search?

e Small amount of data
v-mode: 119, r-mode: 16

— NOo @
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Anti-neutrino mode e-like candidates
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Can we use Wilk’s
theorem for leptonic CP
violation search?
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Can we use Wilk’s
theorem for leptonic CP
violation search?

e Small amount of data — Nno @ 2K Runi10 Preliminary

v-mode: 119, U-mode: 16 8 2al A s, = 045,050,055, 0.0 j
3 3 — Am2, =2.49x10” eV?
= 22 - ---- Amj; = -2.46x10” eV?
. . 27 NO
* Parameters with boundaries - no @ s 5 N
. o - §
eg.—1 <sin6 <1 e -
q'; - N
g 1o =
e (approximate) degeneracies = no @ = = -
e.g. mostly sensitive to s1in o é DEE -
= degenerate in £sgn cos 0 5 op o DuaEsatem) -
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In fact an 8-fold degeneracy exists. < Neutrino mode e-like candidates
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Can we use Wilk’s

theorem for leptonic CP

violation search?

e Small amount of data
v-mode: 119, r-mode: 16

e Parameters with boundaries = no @

eg.—1 <smo <1

e (approximate) degeneracies = no @

— NOo @

e.g. mostly sensitive to sin o

= degenerate in £sgn cos o

In fact an 8-fold degeneracy exists.

e @ contains (effectively) discrete

parameters / hypotheses
here: mass ordering

— NO @
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Anti-neutrino mode e-like candidates
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Feldman-Cousins

Neyman-Construction using A)(z as ordering principle

* generate many toy experiments

at each 0,

e compute Ay*(6,

ruc

) for all to

obtain its distribution

e get “critical values” s.1.
P(Axiue < A2 | Oypue) =68%,90%, -+
basically the percentiles as

function of 6,

ruc

25
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-|_L etrue = — /2
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50 500
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: 20
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Feldman-Cousins

Neyman-Construction using A)(z as ordering principle

* generate many toy experiments

at each 0,

e compute Ay*(6,

ruc

) for all to

obtain its distribution

e get “critical values” s.1.

P(Axpee < By

C

basically the percentiles as
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Feldman-Cousins

Neyman-Construction using A)(z as ordering principle

* generate many toy experiments

at each 0.

e compute Ay*(6,..
obtain its distribution

e get “critical values” s.1.

P(A)(t%ue < A)(cz | etrue> =68%,90%, ---
basically the percentiles as

function of 6,

) for all to

T2K Preliminary

1o CL

LENNL N Y N Y [N N S L Y N B L L By oo
90% CL — 20 CL —

Error bands are binomial _:
confidence intervals due 4
to number of toys
1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | B

0 1 2 3

) 6

Cp

ruc



Feldman-Cousins

Neyman-Construction using A)(z as ordering principle

* generate many toy experiments
at each 0,

e compute Ay*(0,.,.) for all to
obtain its distribution

e get “critical values” s.1.
P(Axiue < A2 | Oypue) =68%,90%, -+
basically the percentiles as

function of 6,

T2K Preliminary

So= <1t
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Feldman-Cousins

Neyman-Construction using A)(z as ordering principle

generate many toy experiments

at each 0,

compute Ay*(6,.,..) for all to
obtain its distribution

get “critical values” s.t.

T2K Preliminary

P(A%t%ue < A%g | etrue> — 68 % ° 90 % s °°° = 25;_ Normal ordering _;

basically the percentiles as o T e E

. S 20 CL critical Ay? B

function of 6. g 5

10p Ay? from\

| | I *" data-fit ]

construct confidence interval by 3 B

AxHO) < AyZ(0) A RN
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Feldman-Cousins

Neyman-Construction using A)(z as ordering principle

generate many toy experiments

at each 0,

compute Ay*(6,.,..) for all to
obtain its distribution

get “critical values” s.t.

T2K Preliminary

P(A){éue<A)(C2|9tme) =68%,90%, - 3 25‘| ll‘

basically the percentiles as 08 E

function of 6, o :

Conzstruct Confzidence interval by 5‘ L Sl ‘

Ax~(0) < Ay (0) T T
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Critical values for o.p

At high CL start to see the sin o
boundary in other mass ordering

Normal ordering Inverted ordering

T2K Preliminary T2K Preliminary

[ | T T T T | T T T T | | T T T | T T T T —] (@\| | | | | | | T T T T | T T T T | ]
s oCL 90% CL <4_ o0l 4 8 & wcL 90% CL 250l

N ] 2 . - |
4_ ________________________________ ~— 4:__ ________ ] rF_=_ ____13 - __.____!____._.___E.

.__ ; ._ [ ] o Y o po f
N ] g o S o _______: Se—
200 T, . - 2C -
| SR SR - | - =
0 - I I I R X Lo | I I - 0 - I T I I I I I I -

MO and sgn cos 0 degeneracies /

sin 0 = — 1 boundary sin 6 = + 1 boundary

3 from L. Berns, Moriond 2021



Problem

e Current experiments (T2K) started excluding ocp ranges at 3o CL.
Future experiments (HK, DUNE) aiming for So discovery of CP violation in leptons.

HK 10 years (2.70E22 POT 1:3 v:v)

[ I | R [ P | ' | R R B | I | L R | ]

Statistics only

—_—
N

_—
S N

Improved syst. (v./V,

T2K 2018 syst. (v./v, xsec. error 4.9%)

P R I | | | il ] L

12
xsec. error 2.7%)

sin(8p) = O exclusion ( \ Ax? )
=0

- DUNE Sensitivity
— All Systematics
~ Normal Ordering

0.4 < sin®0,, < 0.6

2
. -3 -2 -1 1 2 3 o
Hyper-K preliminary True §
CP

True normal ordering (known)

sin(0,;) = 0.0218 sin’(6,,) =0.528 |Amy,| = 2.509E-3

J. Wilson, Neutrino 2022
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[ sin20,, = 0.088 + 0.003

336 kt-MW-years

624 kt-MW-years
Median of Throws

1o: Variations of
statistics, systematics,

and oscillation parameters
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S/
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Problem

e Current experiments (T2K) started excluding ocp ranges at 3o CL.
Future experiments (HK, DUNE) aiming for So discovery of CP violation in leptons.

e By definition, to obtain high confidence-level critical values in Feldman-Cousins method,
need many toy experiments:

30 : > 370
4o : > 16k
S50 : > 1. "M

each fit is complicated with ©(100) parameters often having non-linear responses,
so this is not very practical.
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Problem

e Current experiments (T2K) started excluding ocp ranges at 3o CL.
Future experiments (HK, DUNE) aiming for So discovery of CP violation in leptons.

e By definition, to obtain high confidence-level critical values in Feldman-Cousins method,
need many toy experiments:

30 : > 370
4o : > 16k
S50 : > 1. "M

each fit is complicated with ©(100) parameters often having non-linear responses,
so this is not very practical.

e Now even if we produce say 100M toy experiments to get So critical values,
most of the toy experiments will be around 16 ~ 26 and “wasted”.

e Can we do better? Can we specifically generate toys that matter at high CL?
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Naive attempt

e Let’s preferentially sample all low-probability toys
“increase the temperature T'”

e-g-psmpl(x) = [p(x | etrue)] v
p(x | Htrue)

P smpl(x)

and weight each toy as w(x) =

e So e.g. for each bin i, sample toys with

T/ 4; error instead of usual Poisson error \/Z P ( ¥ .)

-
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Naive attempt

e Let’s preferentially sample all low-probability toys
“increase the temperature T'”

e-g-psmpl(x) = [p(x | etrue)] v
p(x | Htrue)

P smpl(x)

and weight each toy as w(x) =

e So e.g. for each bin i, sample toys with

T/ 4; error instead of usual Poisson error \/Z P ( P )
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Naive attempt

e Let’s preferentially sample all low-probability toys
“increase the temperature T'”

8.9 Pmpi®) := [P(x | O]
p(x | Htrue)

P smpl(x)

and weight each toy as w(x) =

e So e.g. for each bin i, sample toys with
T4/ 4; error instead of usual Poisson error \/Z

 This gives you toys with larger values of )(2

37
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Naive attempt

Let’s preferentially sample all low-probability toys
“increase the temperature T'”

— T=1.
— T=1.

4000
|

8.9 Pmpi®) := [P(x | O]
l?(x |é%rue)

P smpl(x)

2000
|

and weight each toy as w(x) =

Number of toy experiments
3000
|

1000
|

'/ N

I [ I I I
60 80 100 120 140 160 180

PR

0

So e.g. for each bin i, sample toys with
T4/ 4; error instead of usual Poisson error \/Z

This gives you toys with larger values of )(2

8000

—_— e D

But! almost all of them have small Ay?(6,,,.), because
there are NV, , directions in which we can increase the

- — -

6000

temperature, but only k (non-linear) directions of them
contribute to a change of A)(z(H), the rest will only
increase )(Iiin

Number of toy experiments
4000

2000

0
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Naive attempt

e Let’s preferentially sample all low-probability toys
“increase the temperature T'”

1e+01
|

Toy weight
1e-02

e'g'psmp](x) = [p(x | gtrue)] =
l?CX |é%rue)

P smpl(x)

and weight each toy as w(x) =

1e-05

—— -
= uonn

e So e.g. for each bin i, sample toys with : ,

T/ 4; error instead of usual Poisson error \/Z 100 , 150 200
X (Orrue)

1e-08

 This gives you toys with larger values of)(2 Weiahts f Ay
eights for same Ay

vary over many orders
of magnitude

« But! almost all of them have small Ay?(6,,.), because

there are NV, , directions in which we can increase the

1e+01

temperature, but only k (non-linear) directions of them
contribute to a change of A)(Z(H), the rest will only
increase Xr%lin

Toy weight
1e-02

1e-05

e In fact, because now we have to weight each toy x with

w(x), any variation in w(x) for the same value of Ay? will
actually “cost” us toy statistics, so this is even worse

than before, not only at low Ay?, but also at high Ay?

- A
1T AN

— — -
inmn n

1e-08

I | I I
5 10 15 20

N
(@]
w
o
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Naive attempt

40

Weighted toy experiments

Weighted toy experiments

5000

500

50

2 ] — T=
— T=1.
| — T=14
i ' Better at
n %_high y*
. Worse2 ; ]
at low y '
o [ I I [ [ I : I
60 80 100 120 140 160 180
2 Oue)
| T=1
T=12
T=14

Worse than
standard
17 Feldman-Cousins

even at high Ay?!

| | | |
2 4 6 8

Ay 2(9t

rue)




The solution: mixture of many &

e What does high Ay?(6,,,.) Mean?
— there exists a different value @ from which one

is more likely to obtain the data x than from 0.
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The solution: mixture of many &

e What does high Ay?*(6,,,.) mean?
— there exists a different value @ from which one

is more likely to obtain the data x than from 6,

rue —— True 6 = —11/2 (target)

o — True6=0
g _ —— True 8 = +11/2

7)) (@)

"E A

()}

£ W

)

o

X

()

>

@)

: o M

(@) o -

)

= [

-}

Z

W Wmﬂ% J
I I I -
10 15 20 25 30

Ay z(etarget)
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The solution: mixture of many &

e What does high Ay?*(6,,,.) mean?
— there exists a different value @ from which one
is more likely to obtain the data x than from 6,

rue —— True 6 = —11/2 (target)
— True =0
—— True 8 = +11/2

 Just use all toys sampled from many Qsmpl at once
Mixture of 16 6-values

1 S
Panpt(®) = px | {0]) == > p(x | 6)
s=1

(mixture model)

10000
| I T
I

100
I

Number of toy experiments

IIIIIII i

I I I | I I
S 10 15 20 25 30

Ay*(6,

arget)
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The solution: mixture of many &

e What does high Ay?*(6,,,.) mean?
— there exists a different value @ from which one

is more likely to obtain the data x than from 0. — Mixture / naive
- —— Theoretical lower limit
« Just use all toys sampled from many Qsmpl at once % Q
LS e
Panpi®) = pCx | {O}) 1= = D p(x | 0) ;
s=1 i)
(mixture model) = ‘?r
< _
= ()
As long as 0, are close enough, there will always § /
be some @, close enough to 0 £ o /
5 T -
€ 0 -
2 2 - Exponential
an A)( (etarget) > A)(() % J-F‘JJJJJI / P !
T / enhancement!
o
dNtoys(x | {9}) ZS p(x | es) % -
= - ! ! | | ! |
dn, toys(x | etarget) P (X | etarget) 5 10 15 20 25 30
p(x | 0) 2
A)( (Htarget)

- P (X | etarget)
all toys will be sampled more often,

1 A2
= exp|=A
p[2 )(0] 44 high-A)(2 exponentially more often



The solution: mixture of many &

What does high Ay?(6,,,.) mean?
— there exists a different value @ from which one

is more likely to obtain the data x than from 0.

Just use all toys sampled from many 0, ,

1 S
Panpt(®) = px | {0]) == > p(x | 6)
s=1

(mixture model)

jat once

Toy weight

As long as 0, are close enough, there will always
be some @, close enough to 0, such that the

weights w will be bounded from above resulting in

numerical stability (at least for the A)(z values we
care about).

W) S Sexp|—3Ar*Orarger)

with
_ P (x I Htarget)

X) =
pix | {6})
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The solution: mixture of many &

e What does high Ay?*(6,,,.) mean?
— there exists a different value @ from which one

is more likely to obtain the data x than from 0,
|
« Just use all toys sampled from many Qsmpl at once o LLLEI“
1 & 2 5 Works very well both at low and
Panpt(®) = px | {0]) == > p(x | 6) g - high Ay
_ s=1 Qo ]
(mixture model) < 3 &&H&h
> O |
O -—
e Aslong as 0, are close enough, there will always G

be some @, close enough to 0, such that the é <

o
weights w will be bounded from above resultingin 2 o
numerical stability (at least for the A)(z values we
care about). —— Standard Feldman-Cousins

N~ .

© _| —— Mixture model :

<S LA20 < | | | | | |
wx) S Sexp [_E 2 ( target)]
3) 10 15 20 25 30
with 2
p (x | H‘[arget) A% (Htal’get)

wix) =

X) =
pix | {6})
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Critical value

distributions 13- ...

* The same toys are used to
produce both results!

e Errors for critical values

significantly reduced (e.g. 30)
e 50 were impossible to .
estimate before, now easy %)
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Critical value
distributions

* The same toys are used to
produce both results!

e Errors for critical values
significantly reduced (e.g. 30)

e 50 were impossible to
estimate before, now easy

e Bonus: can now interpolate
critical values for free!
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Nuisance parameters

e Feldman-Cousins paper itself does not deal with presence of nuisance parameters, various approaches exist

e As prior distribution (prior Highland-Cousins)

Just define p(x | 0) := [dnp(n)p(x | 0,1)

and use this both for fitting and throwing toys, i.e. fit by marginalizing.
In most cases using profile likelihood is similar to marginal likelihood so should be ok for using in fit too (with constraint
term corresponding to prior).

Performance improvement same.

If systematics are not well constrained by data,

can also compute toy weight at fixed # instead of marginalizing, which is much cheaper.

) p (X | etarget’ ntrue) ) P (X | Qtarget)
L.e. WX, Nipye) = instead of w(x) =

" PG | {0} floe) pGr 1 {0])

e For prior unconstrained parameters and parameters that get very constrained by the data this is not ideal. Use posterior
Highland-Cousins conditioned on the true value of the parameter of interest 0

i.e. define toy distribution by p(x | 9) := Jdn P | Xg000 ) p(x | O, 17)

and fit by profiling. Here the constraint term should be thrown for each toy experiment (included in x) as though it is
external data.

In this case we get the same performance improvement if for fixed 6 the #-posterior is sufficiently gaussian.

e | do not know yet, if one can prove any properties if #-posterior is not sufficiently gaussian, and method may not be directly
applicable. However, in this case the Feldman-Cousins method will be dependent on the nuisance parameter treatment
choice (similar to priors in Bayesian analysis) so more careful analysis would be necessary anyway. If the number of such
non-gaussian nuisances is small, they could be included as part of the parameters of interest.
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Summary

Neutrino oscillation experiments aiming to discover
CP violation in leptonic sector

Frequentist analysis of neutrino oscillation requires
expensive

procedure because Wilk’s theorem
cannot be used

Proposed a simple technique that efficiently generates
high-Ay? toys, resulting in of
uncertainty for

+ provides correct interpolation of critical values for free

Hopefully this can help many experiments, not only v
-OSC.

Exploring various other techniques as well, hopefully

Feldman-Cousins will not be considered an expensive
calculation soon
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“Simply use a mixture of

toys generated at many 0
values and reweight”

to be posted on arXiv soon!


https://www.mv.helsinki.fi/home/rummukai/lectures/montecarlo_oulu/lectures/mc_notes4.pdf

