SEARCHING FOR MATTER CREATION WITH GERDA AND BEYOND

L. Pertoldi <luigi.pertoldi@tum.de> Erice • 19 June 2022

TU München, INFN Padova

Why neutrinoless double- β decay?

 $(A_1 \neq) \longmapsto (A_1 \neq +2) + 2e^{-} + 2\overline{A_2}$

(A, z)

"The search for $0\nu\beta\beta$ decay is one of the most compelling and exciting challenges in all of contemporary physics" 1

- $0\nu\beta\beta$ observation \Rightarrow Majorana neutrino and Lepton Number Violation
- Lepton number \leftrightarrow Barion number \mapsto new physics, baryogenesis?

Light neutrino mass mechanism

The (Majorana) neutrino that mediates $0\nu\beta\beta$ is the one that oscillates and the Standard Model is an effective theory (seesaw mechanism)

$$(T_{1/2}^{0v})^{-1} = G^{0v} |M^{0v}|^2 \langle m_{\beta\beta} \rangle^2$$
 Majorana effective mass

¹100+ papers per year with "0v $\beta\beta$ " in the title [INSPIRE-HEP statistics]

All experiments measure the total energy of the two emitted electrons

 \mapsto necessary and sufficient for discovery

THE GERDA EXPERIMENT

GERMANIUM DETECTOR ARRAY AT LNGS - 3500 M.W.e. -

5/27

15 fiber modules 9 top • 35.6 kg (later 44.2 kg) of HPGe EPJC 79 (2019) 11, 978 EPJC 81 (2021) 505 64 m³ LAr performant J & large J lange 🖌 performant V & small × mylon WLS (semi-)Coaxial BEGe ICPC - PAST-- PRESENT--FUTURE-• Hybrid LAr light collection system: WLS fibers / SiPMs / PMTs reflective • μ-veto: water Cherenkov, scintillating panels [] [FP]C 76 (2016)298 copper • Ultra radio-pure materials, small passive mass, deep underground

PHASE II DATA ENERGY SPECTRUM BEFORE HIGH-LEVEL CUTS

- Data taken from Dec 2015 to Nov 2019 (~90% duty cycle, including upgrade works)
- Energy resolution: ~ 0.1% FWHM at Q_{BB} # EPJC 81 (2021) 8, 682
- 103.7 kg yr of exposure selected for analysis, largest ever collected with ^{enr}Ge

PHASE II DATA MODELING JHEP 03 (2020) 139

- Bayesian multivariate fit of Monte Carlo predictions (with screening measurements as priors)
- Q_{BB} dominated by β from ⁴²K (from ⁴²Ar in LAr), α from ²¹⁰Po, γ from ²²⁸Th and ²³⁸U chains
- Results are input to several physics analyses and inform future experiments (LEGEND.)

- Point-contact detectors: two-sided univariate A/E cut
- · Coaxial detectors: artificial neural network and risetime cut
- 0vββ signal efficiency: 90% (70% for coaxials) μEPJC 82 (2022) 284

...AND LIQUID ARGON ANTI-COINCIDENCE

single-detector erents

- Anti-coincidence between HPGe trigger and SiPM/PMT data (≥ 0.3 p.e. in a 5 us window)
- Extremely low event rate at Q_{RR} of ~ 5 · 10⁻⁴ cts / (keV kg yr) \mapsto quasi-background-free
- Few events at $Q_{_{RR}} \mapsto "simple"$ background-model-free analysis

"One of the world's best-performing 0vββ experiments"

- $5.2^{+1.6}_{-1.3} \cdot 10^{-4}$ cts / (keV kg yr) at $Q_{\beta\beta}$
- No signal in 127.2 kg yr of exposure blind analysis
- $T_{1/2}^{0v} > 1.8 \cdot 10^{26} \text{ yr} (90\% \text{ C.L. frequentist})^{\circ}$
- $\langle m_{\beta\beta} \rangle < 79-180 \text{ meV} (NME uncertainty)$

Νοτ όνιν θνββ

- ββ event survival probability > 97% (random coincidences)
- Cleaner, high-statistics $2\nu\beta\beta$ spectrum \mapsto precision SM test bench
- Need a model for signal and background after the cut, but how to simulate the LAR veto classifier?

MODELING THE LIQUID ARGON DETECTOR RESPONSE

MODELING THE LIQUID ARGON DETECTOR RESPONSE (LIGHTS OFF)

DATA MODELING BEFORE CUTS JHEP 03 (2020) 139

- Bayesian multivariate fit of Monte Carlo predictions (with screening measurements as priors)
- Q_{BB} dominated by β from ⁴²K (from ⁴²Ar in LAr), α from ²¹⁰Po, γ from ²²⁸Th and ²³⁸U chains
- Results are input to several physics analyses and inform future experiments (LEGEND.)

- Little or no light from β and α surface events (but suppressed by pulse-shape cut)
- γ from ²²⁸Th and ²³⁸U efficiently suppressed (99.7% and 85%, respectively)
- Can now use model to isolate and study $2\nu\beta\beta$ events

Searching for matter creation with GERDA and beyond • L. Pertoldi • 19 June 2022

THE FUTURE

50 YEARS OF DOUBLE BETA DECAY WITH ⁷⁶GE

WHAT NEXT?

GEND-1000

"The collaboration aims to develop a **phased**, ⁷⁶**Ge-based** double-beta decay experimental program with discovery potential at a **half-life beyond 10²⁸ yr**, using existing resources as appropriate to expedite physics results."

LEGEND-200

- 200 kg of ^{enr}Ge (×5 yr), in GERDA cryostat
- Funded, under commissioning
- $B \sim \mathbf{2} \cdot \mathbf{10}^{-4}$ cts / (keV kg yr) $\longmapsto T_{1/2}^{0v} > \mathbf{10}^{27}$ yr

LEGEND-1000 arxiv 2107.11462 "pre-conceptual design report,

- 1 ton of ^{enr}Ge (×10 yr), awaiting funding
- $B < 10^{-5}$ cts / (keV kg yr) $\mapsto T_{1/2}^{0v} > 10^{28}$ yr
- + Cover full $\langle m_{etaeta}
 angle$ inverted ordering region

50 YEARS OF DOUBLE BETA DECAY WITH ⁷⁶GE

THE LEGEND -1000 BASELINE DESIGN

LEGEND

LEGEND -200 COMMISSIONING AT LNGS

LEGEND

LEGEND. -1000: A DISCOVERY MACHINE $T_{1/L}^{o^2} = 10^{29}$ yr

LEGEND

WRAPPING UP

- has searched for $0v\beta\beta$ in a *quasi-background-free* regime
- has led the worldwide effort by providing strong half-life limits
- has demonstrated the maturity of germanium technology for a ton-scale project

The scientific community:

- has acknowledged the search for $0\nu\beta\beta$ as one of the most compelling challenges in contemporary physics
- strives for international funding for ton-scale $0\nu\beta\beta$ experiments

LEGEND :

- has a low-risk path to meeting its background goal and is optimized for discovering $0\nu\beta\beta$
- will pioneer the exploration of new energy frontiers beyond the inverted ordering scenario