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QCD
“Simple” and elegant theory based on the gauge principle:

LQCD =

Nf∑
f=1

q̄f (i γµDµ −mf ) qf −
1

2
TrGµνG

µν .

Main properties of QCD:

Confinement: physical excitations (hadrons) are not quanta of
the fields (quarks and gluons).
QCD vacuum is a dual superconductor. Quarks are confined by
a ’tHooft-Mandelstam color flux tube.
In pure YM (Nf = 0), hadrons (glueballs) are massive, unlike gluons.

Asymptotic freedom: certain short distance (hard) procesess do
reveal quarks and gluons. ΛQCD = O(200 MeV), i.e., 1 fm−1.

Chiral symmetry breaking: axial symmetry of the Lagrangian
emerging in mf → 0 limit is not realized linearly in the spectrum.
Instead, pion is a would-be Goldstone boson.
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QCD in a many-body environment

Examples: neutron stars, sub-ms-old Universe, heavy-ion colli-
sions. Characteristic energy per d.o.f. of order ΛQCD.

Statistical approach. First approximation is always equilibrium.
I.e., the most “likely” ensemble of quantum states of the system
at given total energy.

Characterized by temperature: energy per d.o.f. (energy needed
to increase entropy by 1.)
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Thermodynamics

The partition function:

Z(T ) =
∑

all states

e−Estate/T = Tr e−H/T .

can be calculated by a path integral in Euclidean space with
compactified (β = 1/T ) imaginary time direction.

Pressure: p(T ) = (T/V ) logZ.

Entropy density: s(T ) = dp/dT .

Energy density ε(T ) = Ts− p, etc.

At low T (� ΛQCD) hot QCD is a gas of pions, with a little bit of
baryons. Interacting via resonances – hadron resonance gas.
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Phase transition

Is p(T ) an analytic function? Or is there a phase transition to a plasma
of quarks and gluons (QGP)? (Collins-Perry, Cabibbo-Parisi 1975)

Most commonly: a discontinuity of ε: ε(Tc − 0) 6= ε(Tc + 0).
A.k.a. first-order phase transition.
I.e., coexistence of two different phases at same T = Tc.

In pure YM, there is a (global discrete ZNc) symmetry of Eu-
clidean QFT which breaks above a certain Tc = O(ΛQCD)
(Polyakov 1977).

The order parameter is Polyakov line: 〈TrP exp(i
∫
Atdt〉 =

e−βFq . Vanishing below Tc signifies confinement (Fq =∞).

For Nc = 3 this transition is first-order.
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YM + quarks = QCD

Quarks break Z3 symmetry. Polyakov order parameter is always
nonzero in QCD.

Linear string-like confining potential is also not possible due to
string (flux-tube) breaking by qq̄.

Asymptotic freedom still suggests that at high T – Quark-Gluon
Plasma.

Is there a phase transition from Hadron Gas to Quark-Gluon
Plasma?
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The chiral symmetry

For massless quarks, QCD has global axial (chiral) symmetry
SUA(Nf ). It is spontaneously broken in the vacuum.

If this symmetry is restored in QGP there must be a phase tran-
sition. What is the order?

Generically – first order. But for Nf = 2 the second-order transi-
tion is possible (Pisarski-Wilczek 1983).

Because a conformal theory (correlation length → ∞) with one
relevant operator (tuned by T ) exists for the corresponding uni-
versality class SUA(2)× SUV (2) = O(4).

But the quarks are not massless.

M. Stephanov High T QCD and Phase Diagram Erice 2022 7 / 27



The chiral symmetry

For massless quarks, QCD has global axial (chiral) symmetry
SUA(Nf ). It is spontaneously broken in the vacuum.

If this symmetry is restored in QGP there must be a phase tran-
sition. What is the order?

Generically – first order. But for Nf = 2 the second-order transi-
tion is possible (Pisarski-Wilczek 1983).

Because a conformal theory (correlation length → ∞) with one
relevant operator (tuned by T ) exists for the corresponding uni-
versality class SUA(2)× SUV (2) = O(4).

But the quarks are not massless.

M. Stephanov High T QCD and Phase Diagram Erice 2022 7 / 27



Lattice

First-principle calculation of QCD partition function at finite T .
On a discretized, finite volume space-time this becomes a prob-
lem solvable by Monte Carlo methods.

Lattice calculations reveal
that there is a crossover, not
a phase transition for physi-
cal (finite) quark masses.
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At asymptotically large T pressure, entropy, etc approach the
QGP Stefan-Boltzmann limit.
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“Perfect” fluid

Near crossover QGP is a strongly coupled fluid.

The degrees of freedom at low T are hadrons. At hight T –
quark and gluons. But what is a quasiparticle description in the
crossover region?

Viscosity in a gas η ∼ `m.f.p. ∼ 1/coupling2 and η/~s is large.
Lattice calculations (notoriosly difficult in this case) and heavy-
ion collision measurements indicate that η/~s ∼ 0.2 near Tc.

In a special set of infinitely strongly coupled theo-
ries η/~s = 1/4π is the lower bound.

Heavy-ion collision experiments indicate that sQGP
may be saturating it.
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Big Bang vs little bangs

Little Bang

Expansion accompanied by cooling, followed by freezeout.
Difference: space itself not expanding in HIC.
Difference: One Event vs many events
(cosmic variance vs e.b.e. fluctuations)
Difference: tunable parameter –

√
s.
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Heavy-Ion Collisions. Thermalization.

“Little Bang”

The final state looks thermal.

Similar to CMB.
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Flow – looks hydrodynamic. Initial anisotropy fluctuations are
propagated to final state hydrodynamically.
√
s controls baryon asymmetry in the final state. Quantified by

baryon chemical potential µB – energy cost of adding a baryon.
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Phase diagram of QCD

Hadron Gas
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Heavy-ion collisions explore QCD phase diagram by varying
√
s.

Does the transition become first-order at some µB?

Lattice calculations at finite µB, despite recent progress, are still
hindered by sign problem.
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Critical point
– end of phase coexistence –
is a ubiquitous phenomenon

Water:

Is there one in QCD?
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History

Cagniard de la Tour (1822): discovered continuos transition from liquid
to vapour by heating alcohol, water, etc. in a gun barrel, glass tubes.
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Name

Faraday (1844) – liquefying gases:

“Cagniard de la Tour made an experiment some years ago which gave me
occasion to want a new word.”

Mendeleev (1860) – measured vanishing of liquid-vapour surface
tension: “Absolute boiling temperature”.

Andrews (1869) – systematic studies of many substances established
continuity of vapour-liquid phases. Coined the name “critical point”.
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Theory

van der Waals (1879) –
in “On the continuity of the gas and liquid state”
(PhD thesis) wrote e.o.s. with a critical point.

Smoluchowski, Einstein (1908,1910) – explained critical opalescence.

Landau – classical theory of critical phenomena

Fisher, Kadanoff, Wilson – scaling, full fluctuation theory based on RG.
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Critical opalescence

shining laser light through liquid
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Critical point between the QGP and hadron gas phases?
QCD is a relativistic theory of a fundamental force.

CP is a singularity of EOS, anchors the 1st order transition.

Hadron Gas

Crossover
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Assumption for the next part of this talk
H.I.C. are sufficiently close to equilibrium that we can study
thermodynamics at freezeout T and µB — as a first approximation.

NB: Event-by-event fluctuations:

Heavy-ion collisions create systems which are
large enough (for thermodynamics),
but not too large (N ∼ 102 − 104 particles)

EBE fluctuations are small (1/
√
N ),

but measurable.
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What are the signatures of the critical point?

EBE fluctuations vs
√
s [PRL81(1998)4816]

Equilibrium = maximum entropy.

P (σ) ∼ eS(σ) (Einstein 1910)

At the critical point S(σ) “flattens”. And χ ≡ 〈δσ2〉V →∞.

CLT?

δσ is not an average of∞ many uncorrelated contributions: ξ →∞

In fact, 〈δσ2〉 ∼ ξ2/V .
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Higher order cumulants
n > 2 cumulants (shape of P (σ)) depend stronger on ξ.

E.g., 〈σ2〉 ∼ ξ2 while κ4 = 〈σ4〉c ∼ ξ7 [PRL102(2009)032301]

For n > 2, sign depends on which side of the CP we are.

This dependence is also universal. [PRL107(2011)052301]

Using Ising model variables:
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Mapping Ising to QCD and observables near CP
κ4 vs µB and T :

In QCD (r, h)→ (µ− µCP, T − TCP)
Rehr-Mermin, 1973

Parotto et al, 1805.05249
Pradeep-MS, 1905.13247

Mrozcek et al, 2008.04022

Experiments do not measure σ. Fluc-
tuations of σ are “imprinted” on hadron
multiplicities.

κn(N) = N +O(κn(σ)) MS, 1104.1627
Pradeep et al 2109.13188
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tuations of σ are “imprinted” on hadron
multiplicities.

κn(N) = N +O(κn(σ)) MS, 1104.1627
Pradeep et al 2109.13188
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Beam Energy Scan I: intriguing hints
Equilibrium κ4 vs µB and T :

STAR Data
0 - 5%
70 - 80%
Stat. uncertainty
Syst. uncertainty
Projected BES-II
Stat. uncertainty

STAR
 FXT
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STAR 2001.02852
“non-monotonic with 3.1σ significance”
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Beam Energy Scan I: intriguing hints
Equilibrium κ4 vs µB and T :

Central Au + Au CollisionsCentral Au + Au Collisions
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Theory/experiment gap: predictions assume equilibrium, but
in heavy-ion collisions

near the critical point non-equilibrium physics is essential.

Because of the critical slowing down, certain slow degrees of freedom
are further away from equilibrium. These degrees of freedom are
directly related to fluctuations.

Challenge: develop hydrodynamics with fluctuations capable of
describing non-equilibrium effects on critical-point signatures.
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Randomness is hydrodynamics

Hydrodynamics is a coarse-grained theory. Relies on
scale separation: `wave � `mic, τevolution � τequilibration.

Slowest variables obey conservation equations (∂µTµν = 0):

∂tψ = −∇ · Flux[ψ];

where ψ is an averaged conserved density, e.g., T i0, J0.

Operators T i0, J0 coarse-grained over “hydrodynamic cells” b,
`wave � b� `mic, are stochastic variables and obey

∂tψ̆ = −∇ ·
(

Flux[ψ̆] + Noise
)

(Landau-Lifshitz)

Non-linearities + locality⇒ UV divergences, “long-time tails”.
In numerical simulations – cutoff dependence.
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Randomness in hydrodynamics

Stochastic description

Random hydro variables: ψ̆

∂tψ̆ = −∇ ·
(

Flux[ψ̆] + Noise
)

+ fewer variables and eqs.

− stochastic

− cutoff dependence

Landau-Lifshits, Kapusta et al,
Gale et al, Nahrgang et al, . . .

Deterministic description

ψ ≡ 〈ψ̆〉, G ≡ 〈ψ̆ψ̆〉, etc.

∂tψ = −∇ · Flux[ψ;G];

∂tG = −2Γ(G− Ḡ[ψ]);

− more variables and eqs.

+ deterministic

+ no cutoff dependence
after renormalization

Andreev, Akamatsu et al, Yin et al,
An et al, Martinez et al, . . .
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Summary

Is there a critical point between QGP and hadron gas phases?

Heavy-Ion collision experiments may answer.

The quest for the QCD critical point challenges us to creatively
apply existing concepts and develop new ideas.

Large (non-gaussian) fluctuations – universal signature of a crit-
ical point.

In H.I.C., the magnitude of the signatures is controlled by non-
equilibrium effects. The interplay of critical phenomena and non-
equilibrium dynamics opens interesting questions.
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More
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Hydro+

Yin, MS, 1712.10305

Hydro+ extends Hydro with new non-hydrodynamic d.o.f..

At the CP, the slowest (i.e., most out of equilibrium) new d.o.f. is
the 2-pt function 〈δmδm〉 of the slowest hydro variable m ≡ s/n:

φQ(x) =

∫
∆x
〈δm (x1) δm (x2)〉 eiQ·∆x

where x = (x1 + x2)/2 and ∆x = x1 − x2.

In equilibrium fluctuations are determined by thermodynamics:

φ̄Q =
cp
n2
f(Q) ≈ cp

n2

1

1 + Q2ξ2
.

M. Stephanov High T QCD and Phase Diagram Erice 2022 29 / 27

http://arxiv.org/abs/1712.10305


Relaxation of fluctuations towards equilibrium

As usual, equilibration maximizes entropy S =
∑

i pi log(1/pi):

s(+)(ε, n, φQ) = s(ε, n) +
1

2

∫
Q

(
log

φQ

φ̄Q
−
φQ

φ̄Q
+ 1

)

The equation for φQ is a relaxation equation with rate

Γ(Q) ≈ 2DQ2 for Q� ξ−1, D ∼ 1/ξ.

Impact on fluctuation observables: critical slowing down,
“memory” effects (Berdnikov-Rajagopal, Mukherjee-Venugopalan-Yin, . . . )

Impact of fluctuations on hydrodynamics:

“Renormalization” of bulk viscosity ζ ∼ 1/Γξ ∼ ξ3.

(Non-analytic) frequency dependence of ζ(ω) for ω � Γξ.
“Long-time tails”
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Implementation of Hydro+ and lessons

.

Rajagopal et al, 1908.08539
Du et al, 2004.02719

Conservation laws

Memory and lag

Advection

Feedback is small
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General covariant formalism

An, Basar, Yee, MS, 1902.09517,1912.13456

To embed Hydro+ into a unified theory for critical as well as
non-critical fluctuations we need a general deterministic (hydro-
kinetic) formalism.

Expand stochastic hydro eqs. in {δm, δp, δuµ} ∼ φA
and then average, using equal-time correlator as a new variable

GAB(x1, x2)
?
= 〈φA(x1)φB(x2) 〉.

What is “equal-time” in relativistic hydro?

〈φ(x)φ(x)〉 is singular (cutoff dependent). Renormalization?
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Local equal time and confluent derivative

We need equal-time correlator G = 〈φ(t,x1)φ(t,x2)〉.

But what does “equal time” mean? In what frame?

The most natural choice is local u(x) (at x = (x1 + x2)/2).

x-derivative with y ≡ x1 − x2 “fixed” w.r.t. local rest frame:

boost Λ(∆x)u(x+ ∆x) = u(x):

∆x · ∇̄G(x; y) ≡
G(x+ ∆x; Λ(∆x)−1y)−G(x, y) .

not G(x+ ∆x; y)−G(x; y) .

We define confluent equal time correlator ḠAB(x; y)
and its Wigner transform WAB(x; q) more
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Renormalization

Expansion of 〈Tµν〉 in fluctuations φ contains more

〈φ(x)φ(x)〉 = G(x; 0) =

∫
d3q

(2π)3
W (x; q).

The integral is divergent (in equilibrium G(0)(x; y) ∼ δ3(y)).

Such short-distance singularities can be absorbed into redefin-
ion of EOS (i.e., pressure) and transport coefficients:

〈Tµν(x)〉 = εuµuν + p(ε, n)∆µν + Πµν +
{
G(x, 0)

}
= εRu

µ
Ru

ν + pR(εR, nR)∆µν
R + Πµν

R +
{
G̃(x; 0)

}
.

Constraints of 2nd law, conformality satisfied nontrivially. more
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Confluent derivative, connection and correlator

Take out dependence of components of φ due to change of u(x):

∆x · ∇̄φ = Λ(∆x)φ(x+ ∆x)− φ(x)

Confluent two-point correlator:

Ḡ(x, y) = Λ(x1 − x) 〈φ(x1)φ(x2)〉Λ(x2 − x)T

(boost to u(x) – rest frame at midpoint)

∇̄µḠAB = ∂µḠAB − ω̄CµAḠCB − ω̄CµBḠAC − ω̊bµa ya
∂

∂yb
ḠAB .

Connection ω̄ corresponds to the boost Λ. back

Connection ω̊ makes sure derivative is independent of the choice of
basis triad ea(x) needed to express y ≡ x1 − x2 in local rest frame.

We then define the Wigner transform WAB(x; q) of ḠAB(x; y).
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Renormalization
Expansion of 〈Tµν〉 contains 〈φ(x)φ(x)〉 = G(x; 0) =

∫ d3q
(2π)3

W (x; q).

This integral is divergent (equilibrium G(0)(x; y) ∼ δ3(y)). back

W (x, q) ∼ W (0)︸ ︷︷ ︸
Tw

+ W (1)︸ ︷︷ ︸
∂u/q2

+ W̃

(∼“OPE” or gradient expansion)

〈Tµν(x)〉 = εuµuν + p(ε, n)∆µν + Πµν +
{
G(x, 0)

}
= εRu

µ
Ru

ν + pR(εR, nR)∆µν
R + Πµν

R +
{
G̃(x, 0)

}
.
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Renormalized e.o.s. and transport coefficients
Fluctuation corrections to kinetic coefficients are positive. back

Corrections to pressure and bulk viscosity vanish for conformal e.o.s.

pR(εR, nR) = p(εR, nR) +
TΛ3

6π2

(
(1− c2s − 2Ṫ + ċs) +

1

2
(1− ċp)

)
,

ηR = η +
TΛ

30π2

(
1

γL
+

7

2γη

)
,

ζR = ζ +
TΛ

18π2

(
1

γL
(1− 3Ṫ + 3ċs)

2 +
2

γη

(
1− 3

2
(Ṫ + c2s)

)2

+
9

4γλ
(1− ċp)2

)
,

λR = λ+
T 2n2Λ

3π2w2

(
cpT

(γη + γλ)w
+

c2s
2γL

)
.

γη ≡
η

w
, γζ ≡

ζ

w
, γλ ≡

κ

cp
= D , Ẋ ≡

(
∂ logX

∂ log s

)
m

.

M. Stephanov High T QCD and Phase Diagram Erice 2022 37 / 27



non-Gaussian fluctuations are sensitive signatures of the critical point
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Nonlinearity and multiplicative noise

An et al 2009.10742, PRL

Stochastic approach (with multiplicative noise):

∂tψ̆ = −∇ ·
(

Flux[ψ̆] + Noise
)
, 〈Noise Noise〉 ∼ 2Q[ψ̆] .

Deterministic approach (Hydro+). Infinite hierarchy of coupled
equations for cumulants Gc

n ≡ 〈δψ̆ . . . δψ̆〉c:

∂tψ = −∇ · Flux[ψ,G,Gc
3, G

c
4, . . .];

∂tG = L[ψ,G,Gc
3, G

c
4, . . .];

∂tG
c
3 = L3[ψ,G,Gc

3, G
c
4, . . .];

...
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Controlled perturbation theory

Small fluctuations are almost Gaussian

Introduce expansion parameter ε, so that δψ̆ ∼
√
ε.

Then Gc
n ≡ εn−1 and to leading order in ε:

∂tψ = −∇ · Flux[ψ] +O(ε);

∂tG = −2Γ(G− Ḡ[ψ]) +O(ε2);

...

∂tG
c
n = −nΓ(Gc

n − Ḡc
n[ψ,G, . . . , Gc

n−1]) +O(εn);

To leading order, the equations are iterative and “linear”.

In hydrodynamics the small parameter is (q/Λ)3, i.e.,
fluctuation wavelength 1/q � size of hydro cell 1/Λ (UV cutoff).
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Diagrammatic representation

Systematically expand in ε and truncate at leading order:

Leading order in ε ⇔ tree diagrams.

In higher-orders, loops describe feedback of fluctuations (e.g., long-time tails).
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Generalizing Wigner transform

Definition:

Wn(x; q1, . . . , qn) ≡
∫
dy3

1 . . .

∫
dy3

nGn (x + y1, . . . ,x + yn)

δ(3)
(y1 + . . .+ yn

n

)
e−i(q1·y1+...+qn·yn);

Gn (x1, . . . ,xn) =

∫
dq3

1

(2π)3
. . .

∫
dq3
n

(2π)3
Wn(x, q1, . . . , qn)

δ(3)
(q1 + . . .+ qn

2π

)
ei(q1·x1+...+qn·xn) .

Properties similar to the usual (n = 2) Wigner transform.

Takes advantage of the scale separation:
long-scale x-dependence and short-scale yn-dependence.
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Example: expansion through a critical region

An et al 2009.10742, PRL

Two main features:

Lag, ”memory”.

Smaller Q – slower evolution.
Conservation laws.

Critical point signatures depend
on the scale of fluctuations
probed.
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