High $T\ \mbox{QCD}\ \mbox{Plasma}$ and QCD Phase Diagram

M. Stephanov

"Simple" and elegant theory based on the gauge principle:

$$\mathcal{L}_{QCD} = \sum_{f=1}^{N_f} \bar{q}_f \left(i \, \gamma^{\mu} D_{\mu} - m_f \right) q_f - \frac{1}{2} \text{Tr} \, G_{\mu\nu} G^{\mu\nu} \,.$$

Main properties of QCD:

"Simple" and elegant theory based on the gauge principle:

$$\mathcal{L}_{QCD} = \sum_{f=1}^{N_f} \bar{q}_f \left(i \, \gamma^{\mu} D_{\mu} \, - m_f \right) q_f - \frac{1}{2} \text{Tr} \, G_{\mu\nu} G^{\mu\nu}$$

- Main properties of QCD:
 - Confinement: physical excitations (hadrons) are not quanta of the fields (quarks and gluons).

QCD vacuum is a dual superconductor. Quarks are confined by a 'tHooft-Mandelstam color flux tube.

In pure YM ($N_f = 0$), hadrons (glueballs) are massive, unlike gluons.

"Simple" and elegant theory based on the gauge principle:

$$\mathcal{L}_{QCD} = \sum_{f=1}^{N_f} \bar{q}_f \left(i \, \gamma^{\mu} D_{\mu} \, - m_f \right) q_f - \frac{1}{2} \text{Tr} \, G_{\mu\nu} G^{\mu\nu}$$

- Main properties of QCD:
 - Confinement: physical excitations (hadrons) are not quanta of the fields (quarks and gluons).

QCD vacuum is a dual superconductor. Quarks are confined by a 'tHooft-Mandelstam color flux tube.

In pure YM ($N_f = 0$), hadrons (glueballs) are massive, unlike gluons.

■ Asymptotic freedom: certain short distance (hard) processes do reveal quarks and gluons. $\Lambda_{QCD} = O(200 \text{ MeV})$, i.e., 1 fm⁻¹.

"Simple" and elegant theory based on the gauge principle:

$$\mathcal{L}_{QCD} = \sum_{f=1}^{N_f} \bar{q}_f \left(i \, \gamma^{\mu} D_{\mu} \, - m_f \right) q_f - \frac{1}{2} \text{Tr} \, G_{\mu\nu} G^{\mu\nu}$$

- Main properties of QCD:
 - Confinement: physical excitations (hadrons) are not quanta of the fields (quarks and gluons).

QCD vacuum is a dual superconductor. Quarks are confined by a 'tHooft-Mandelstam color flux tube.

In pure YM ($N_f = 0$), hadrons (glueballs) are massive, unlike gluons.

- Asymptotic freedom: certain short distance (hard) processes do reveal quarks and gluons. $\Lambda_{QCD} = O(200 \, MeV)$, i.e., 1 fm⁻¹.
- Chiral symmetry breaking: axial symmetry of the Lagrangian emerging in $m_f \rightarrow 0$ limit is not realized linearly in the spectrum. Instead, pion is a would-be Goldstone boson.

M. Stephanov

Examples: neutron stars, sub-ms-old Universe, heavy-ion collisions. Characteristic energy per d.o.f. of order A_{QCD}.

- Examples: neutron stars, sub-ms-old Universe, heavy-ion collisions. Characteristic energy per d.o.f. of order Λ_{QCD} .
- Statistical approach. First approximation is always equilibrium. I.e., the most "likely" ensemble of quantum states of the system at given total energy.
- Characterized by temperature: energy per d.o.f. (energy needed to increase entropy by 1.)

The partition function:

$$Z(T) = \sum_{\text{all states}} e^{-E_{\text{state}}/T} = \text{Tr } e^{-H/T}.$$

can be calculated by a path integral in Euclidean space with compactified ($\beta = 1/T$) imaginary time direction.

Pressure:
$$p(T) = (T/V) \log Z$$
.

Entropy density: s(T) = dp/dT.

Energy density $\varepsilon(T) = Ts - p$, etc.

The partition function:

$$Z(T) = \sum_{\text{all states}} e^{-E_{\text{state}}/T} = \text{Tr } e^{-H/T}.$$

can be calculated by a path integral in Euclidean space with compactified ($\beta = 1/T$) imaginary time direction.

Pressure:
$$p(T) = (T/V) \log Z$$
.

Entropy density: s(T) = dp/dT.

Energy density $\varepsilon(T) = Ts - p$, etc.

■ At low $T (\ll \Lambda_{QCD})$ hot QCD is a gas of pions, with a little bit of baryons. Interacting via resonances – hadron resonance gas.

Is p(T) an analytic function? Or is there a phase transition to a plasma of quarks and gluons (QGP)? (Collins-Perry, Cabibbo-Parisi 1975)

Phase transition

Is p(T) an analytic function? Or is there a phase transition to a plasma of quarks and gluons (QGP)? (Collins-Perry, Cabibbo-Parisi 1975)

Is p(T) an analytic function? Or is there a phase transition to a plasma of quarks and gluons (QGP)? (Collins-Perry, Cabibbo-Parisi 1975)

Most commonly: a discontinuity of ε : $\varepsilon(T_c - 0) \neq \varepsilon(T_c + 0)$. A.k.a. first-order phase transition. I.e., coexistence of two different phases at same $T = T_c$. Is p(T) an analytic function? Or is there a phase transition to a plasma of quarks and gluons (QGP)? (Collins-Perry, Cabibbo-Parisi 1975)

- Most commonly: a discontinuity of ε : $\varepsilon(T_c 0) \neq \varepsilon(T_c + 0)$. A.k.a. first-order phase transition. I.e., coexistence of two different phases at same $T = T_c$.
- In pure YM, there is a (global discrete Z_{N_c}) symmetry of Euclidean QFT which breaks above a certain $T_c = O(\Lambda_{\rm QCD})$ (Polyakov 1977).

The order parameter is Polyakov line: $\langle \operatorname{Tr} P \exp(i \int A_t dt) = e^{-\beta F_q}$. Vanishing below T_c signifies confinement $(F_q = \infty)$.

● For $N_c = 3$ this transition is first-order.

- Quarks break Z₃ symmetry. Polyakov order parameter is always nonzero in QCD.
- Linear string-like confining potential is also not possible due to string (flux-tube) breaking by qq̄.

- Quarks break Z₃ symmetry. Polyakov order parameter is always nonzero in QCD.
- Linear string-like confining potential is also not possible due to string (flux-tube) breaking by qq̄.
- Asymptotic freedom still suggests that at high T Quark-Gluon Plasma.
- Is there a phase transition from Hadron Gas to Quark-Gluon Plasma?

The chiral symmetry

- For massless quarks, QCD has global axial (chiral) symmetry $SU_A(N_f)$. It is spontaneously broken in the vacuum.
- If this symmetry is restored in QGP there *must* be a phase transition. What is the order?

The chiral symmetry

- For massless quarks, QCD has global axial (chiral) symmetry $SU_A(N_f)$. It is spontaneously broken in the vacuum.
- If this symmetry is restored in QGP there must be a phase transition. What is the order?
- Generically first order. But for $N_f = 2$ the second-order transition is possible (Pisarski-Wilczek 1983).

Because a conformal theory (correlation length $\rightarrow \infty$) with one relevant operator (tuned by *T*) exists for the corresponding universality class $SU_A(2) \times SU_V(2) = O(4)$.

But the quarks are not massless.

Lattice

First-principle calculation of QCD partition function at finite T. On a discretized, finite volume space-time this becomes a problem solvable by Monte Carlo methods.

Lattice calculations reveal that there is a crossover, not a phase transition for physical (finite) quark masses.

At asymptotically large T pressure, entropy, etc approach the QGP Stefan-Boltzmann limit.

"Perfect" fluid

- Near crossover QGP is a strongly coupled fluid.
- The degrees of freedom at low T are hadrons. At hight T quark and gluons. But what is a quasiparticle description in the crossover region?

"Perfect" fluid

- Near crossover QGP is a strongly coupled fluid.
- The degrees of freedom at low T are hadrons. At hight T quark and gluons. But what is a quasiparticle description in the crossover region?
- Viscosity in a gas $\eta \sim \ell_{m.f.p.} \sim 1/\text{coupling}^2$ and $\eta/\hbar s$ is large. Lattice calculations (notoriosly difficult in this case) and heavyion collision measurements indicate that $\eta/\hbar s \sim 0.2$ near T_c .

"Perfect" fluid

- Near crossover QGP is a strongly coupled fluid.
- The degrees of freedom at low T are hadrons. At hight T quark and gluons. But what is a quasiparticle description in the crossover region?
- Viscosity in a gas $\eta \sim \ell_{m.f.p.} \sim 1/\text{coupling}^2$ and $\eta/\hbar s$ is large. Lattice calculations (notoriosly difficult in this case) and heavyion collision measurements indicate that $\eta/\hbar s \sim 0.2$ near T_c .
- In a special set of infinitely strongly coupled theories $\eta/\hbar s = 1/4\pi$ is the lower bound.

Heavy-ion collision experiments indicate that sQGP may be saturating it.

Big Bang vs little bangs

Little Bang

Expansion accompanied by cooling, followed by freezeout.

- Difference: space itself not expanding in HIC.
- Difference: One Event vs many events (cosmic variance vs e.b.e. fluctuations)
- Difference: tunable parameter $-\sqrt{s}$.

Heavy-Ion Collisions. Thermalization.

"Little Bang"

- The final state looks thermal.
- Similar to CMB.

Heavy-Ion Collisions. Thermalization.

"Little Bang"

- The final state looks thermal.
- Similar to CMB.

Flow – looks hydrodynamic. Initial anisotropy fluctuations are propagated to final state hydrodynamically.

Heavy-Ion Collisions. Thermalization.

"Little Bang"

- The final state looks thermal.
- Similar to CMB.

- Flow looks hydrodynamic. Initial anisotropy fluctuations are propagated to final state hydrodynamically.
- \sqrt{s} controls baryon asymmetry in the final state. Quantified by baryon chemical potential μ_B energy cost of adding a baryon.

Phase diagram of QCD

- Iteavy-ion collisions explore QCD phase diagram by varying \sqrt{s} .
- Does the transition become first-order at some μ_B ?

Phase diagram of QCD

- Iteavy-ion collisions explore QCD phase diagram by varying \sqrt{s} .
- Does the transition become first-order at some μ_B ?
- Lattice calculations at finite μ_B, despite recent progress, are still hindered by sign problem.

M. Stephanov

High T QCD and Phase Diagram

Substance ^{[13][14]} ¢	Critical temperature +	Critical pressure (absolute) \$
Argon	-122.4 °C (150.8 K)	48.1 atm (4,870 kPa)
Ammonia ^[15]	132.4 °C (405.5 K)	111.3 atm (11,280 kPa)
Bromine	310.8 °C (584.0 K)	102 atm (10,300 kPa)
Caesium	1,664.85 °C (1,938.00 K)	94 atm (9,500 kPa)
Chlorine	143.8 °C (416.9 K)	76.0 atm (7,700 kPa)
Ethanol	241 °C (514 K)	62.18 atm (6,300 kPa)
Fluorine	-128.85 °C (144.30 K)	51.5 atm (5,220 kPa)
Helium	-267.96 °C (5.19 K)	2.24 atm (227 kPa)
Hydrogen	-239.95 °C (33.20 K)	12.8 atm (1,300 kPa)
Krypton	-63.8 °C (209.3 K)	54.3 atm (5,500 kPa)
CH ₄ (methane)	-82.3 °C (190.8 K)	45.79 atm (4,640 kPa)
Neon	-228.75 °C (44.40 K)	27.2 atm (2,760 kPa)
Nitrogen	-146.9 °C (126.2 K)	33.5 atm (3,390 kPa)
Oxygen	-118.6 °C (154.6 K)	49.8 atm (5,050 kPa)
CO ₂	31.04 °C (304.19 K)	72.8 atm (7,380 kPa)
N ₂ O	36.4 °C (309.5 K)	71.5 atm (7,240 kPa)
H ₂ SO ₄	654 °C (927 K)	45.4 atm (4,600 kPa)
Xenon	16.6 °C (289.8 K)	57.6 atm (5,840 kPa)
Lithium	2,950 °C (3,220 K)	652 atm (66,100 kPa)
Mercury	1,476.9 °C (1,750.1 K)	1,720 atm (174,000 kPa)
Sulfur	1,040.85 °C (1,314.00 K)	207 atm (21,000 kPa)
Iron	8,227 °C (8,500 K)	
Gold	6,977 °C (7,250 K)	5,000 atm (510,000 kPa)
Water[2][16]	373.946 °C (647.096 K)	217.7 atm (22.06 MPa)

Critical point

 – end of phase coexistence – is a ubiquitous phenomenon

Water:

Is there one in QCD?

History

Cagniard de la Tour (1822): discovered continuos transition from liquid to vapour by heating alcohol, water, etc. in a gun barrel, glass tubes.

Faraday (1844) – liquefying gases:

"Cagniard de la Tour made an experiment some years ago which gave me occasion to want a new word."

Mendeleev (1860) – measured vanishing of liquid-vapour surface tension: "Absolute boiling temperature".

Andrews (1869) – systematic studies of many substances established continuity of vapour-liquid phases. Coined the name "critical point".

van der Waals (1879) – in "On the continuity of the gas and liquid state" (PhD thesis) wrote e.o.s. with a critical point.

Smoluchowski, Einstein (1908,1910) – explained critical opalescence.

Landau – classical theory of critical phenomena

Fisher, Kadanoff, Wilson – scaling, full fluctuation theory based on RG.

shining laser light through liquid

Critical point between the QGP and hadron gas phases?

QCD is a relativistic theory of a fundamental force.

CP is a singularity of EOS, anchors the 1st order transition.

Critical point between the QGP and hadron gas phases?

QCD is a relativistic theory of a fundamental force.

CP is a singularity of EOS, anchors the 1st order transition.

Lattice QCD at $\mu_B \lesssim 2T$ – a crossover.

C.P. is ubiquitous in models (NJL, RM, Holog., Strong coupl. LQCD, ...)

Assumption for the next part of this talk

H.I.C. are sufficiently close to equilibrium that we can study thermodynamics at freezeout *T* and μ_B — as a first approximation.

Assumption for the next part of this talk

H.I.C. are sufficiently close to equilibrium that we can study thermodynamics at freezeout T and μ_B — as a first approximation.

NB: Event-by-event fluctuations:

Heavy-ion collisions create systems which are large enough (for thermodynamics), but not too large ($N\sim 10^2-10^4$ particles)

EBE fluctuations are small $(1/\sqrt{N})$, but measurable.

EBE fluctuations vs \sqrt{s} [PRL81(1998)4816]

Equilibrium = maximum entropy.

 $P(\sigma) \sim e^{S(\sigma)}$ (Einstein 1910)

EBE fluctuations vs \sqrt{s} [PRL81(1998)4816]

Equilibrium = maximum entropy.

$$P(\sigma) \sim e^{S(\sigma)}$$
 (Einstein 1910)

- EBE fluctuations vs \sqrt{s} [PRL81(1998)4816]
- Equilibrium = maximum entropy.

$$P(\sigma) \sim e^{S(\sigma)}$$
 (Einstein 1910)

■ At the critical point $S(\sigma)$ "flattens". And $\chi \equiv \langle \delta \sigma^2 \rangle V \rightarrow \infty$.

- EBE fluctuations vs \sqrt{s} [PRL81(1998)4816]
- Equilibrium = maximum entropy.

$$P(\sigma) \sim e^{S(\sigma)}$$
 (Einstein 1910)

• At the critical point $S(\sigma)$ "flattens". And $\chi \equiv \langle \delta \sigma^2 \rangle V \to \infty$.

CLT?

 $\delta\sigma$ is not an average of ∞ many *uncorrelated* contributions: $\xi \to \infty$

In fact, $\langle \delta \sigma^2 \rangle \sim \xi^2 / V$.

Higher order cumulants

• n > 2 cumulants (shape of $P(\sigma)$) depend stronger on ξ .

E.g., $\langle \sigma^2 \rangle \sim \xi^2$ while $\kappa_4 = \langle \sigma^4 \rangle_c \sim \xi^7$ [PRL102(2009)032301]

- For n > 2, sign depends on which side of the CP we are.
 This dependence is also universal. [PRL107(2011)052301]
- Using Ising model variables:

Mapping Ising to QCD and observables near CP κ_4 vs μ_B and T:

■ In QCD
$$(r, h) \rightarrow (\mu - \mu_{CP}, T - T_{CP})$$

Rehr-Mermin, 1973
Parotto *et al*, 1805.05249
Pradeep-MS, 1905.13247
Mrozcek *et al*, 2008.04022

Mapping Ising to QCD and observables near CP κ_4 vs μ_B and T:

In QCD
$$(r,h) \rightarrow (\mu - \mu_{\rm CP}, T - T_{\rm CP})$$

Rehr-Mermin, 1973 Parotto *et al*, <u>1805.05249</u> Pradeep-MS, <u>1905.13247</u> Mrozcek *et al*, 2008.04022

• Experiments do not measure σ . Fluctuations of σ are "imprinted" on hadron multiplicities.

 $\kappa_n(N) = N + \mathcal{O}(\kappa_n(\sigma))$ MS, <u>1104.1627</u> Pradeep et al <u>2109.13188</u>

Equilibrium κ_4 vs μ_B and T:

M. Stephanov

Equilibrium κ_4 vs μ_B and T:

M. Stephanov

Equilibrium κ_4 vs μ_B and *T*:

M. Stephanov

High T QCD and Phase Diagram

Theory/experiment gap: predictions assume equilibrium, but in heavy-ion collisions

near the critical point non-equilibrium physics is essential.

Because of the critical slowing down, certain slow degrees of freedom are further away from equilibrium. These degrees of freedom are directly related to fluctuations.

Challenge: develop hydrodynamics *with fluctuations* capable of describing *non-equilibrium* effects on critical-point signatures.

■ Hydrodynamics is a coarse-grained theory. Relies on scale separation: $\ell_{wave} \gg \ell_{mic}$, $\tau_{evolution} \gg \tau_{equilibration}$.

■ Hydrodynamics is a coarse-grained theory. Relies on scale separation: $\ell_{wave} \gg \ell_{mic}$, $\tau_{evolution} \gg \tau_{equilibration}$.

Solution Slowest variables obey conservation equations $(\partial_{\mu}T^{\mu\nu} = 0)$:

 $\partial_t \psi = -\nabla \cdot \mathsf{Flux}[\psi];$

where ψ is an *averaged* conserved density, e.g., T^{i0} , J^0 .

■ Hydrodynamics is a coarse-grained theory. Relies on scale separation: $\ell_{wave} \gg \ell_{mic}$, $\tau_{evolution} \gg \tau_{equilibration}$.

Solution Slowest variables obey conservation equations $(\partial_{\mu}T^{\mu\nu} = 0)$:

$$\partial_t \psi = -\nabla \cdot \mathsf{Flux}[\psi];$$

where ψ is an *averaged* conserved density, e.g., T^{i0} , J^0 .

● Operators T^{i0} , J^0 coarse-grained over "hydrodynamic cells" b, $\ell_{\text{wave}} \gg b \gg \ell_{\text{mic}}$, are stochastic variables and obey

$$\partial_t \breve{\psi} = -
abla \cdot \left(\mathsf{Flux}[\breve{\psi}] + \mathsf{Noise} \right)$$

(Landau-Lifshitz)

■ Hydrodynamics is a coarse-grained theory. Relies on scale separation: $\ell_{wave} \gg \ell_{mic}$, $\tau_{evolution} \gg \tau_{equilibration}$.

Solution Slowest variables obey conservation equations $(\partial_{\mu}T^{\mu\nu} = 0)$:

$$\partial_t \psi = -\nabla \cdot \mathsf{Flux}[\psi];$$

where ψ is an *averaged* conserved density, e.g., T^{i0} , J^0 .

9 Operators T^{i0} , J^0 coarse-grained over "hydrodynamic cells" b, $\ell_{\text{wave}} \gg b \gg \ell_{\text{mic}}$, are stochastic variables and obey $\partial_t \breve{\psi} = -\nabla \cdot \left(\mathsf{Flux}[\breve{\psi}] + \mathsf{Noise} \right)$ (Landau-Lifshitz)

● Non-linearities + locality ⇒ UV divergences, "long-time tails". In numerical simulations – cutoff dependence.

Stochastic description

Random hydro variables: $ec{\psi}$

$$\partial_t \breve{\psi} = -
abla \cdot \left(\mathsf{Flux}[\breve{\psi}] + \mathsf{Noise} \right)$$

- + fewer variables and eqs.
- stochastic
- cutoff dependence

Landau-Lifshits, Kapusta et al, Gale et al, Nahrgang et al, ... Deterministic description

$$\psi \equiv \langle \breve{\psi} \rangle, G \equiv \langle \breve{\psi} \breve{\psi} \rangle, \text{etc.}$$

 $\partial_t \psi = -\nabla \cdot \mathsf{Flux}[\psi; G];$
 $\partial_t G = -2\Gamma(G - \bar{G}[\psi]);$

- more variables and eqs.
- + deterministic
- + no cutoff dependence after renormalization

Andreev, Akamatsu et al, Yin et al, An et al, Martinez et al, . . . Is there a critical point between QGP and hadron gas phases?
 Heavy-Ion collision experiments may answer.

The quest for the QCD critical point challenges us to creatively apply existing concepts and develop new ideas.

- Large (non-gaussian) fluctuations universal signature of a critical point.
- In H.I.C., the magnitude of the signatures is controlled by nonequilibrium effects. The interplay of critical phenomena and nonequilibrium dynamics opens interesting questions.

More

Yin, MS, <u>1712.10305</u>

- Hydro+ extends Hydro with new non-hydrodynamic d.o.f..
- At the CP, the *slowest* (i.e., most out of equilibrium) new d.o.f. is the 2-pt function $\langle \delta m \delta m \rangle$ of the slowest hydro variable $m \equiv s/n$:

$$\phi_{oldsymbol{Q}}(oldsymbol{x}) = \int_{\Delta oldsymbol{x}} \left\langle \delta oldsymbol{m}\left(oldsymbol{x}_1
ight) \, \delta oldsymbol{m}\left(oldsymbol{x}_2
ight)
ight
angle \, e^{ioldsymbol{Q}\cdot\Delta oldsymbol{x}}$$

where $\boldsymbol{x} = (\boldsymbol{x}_1 + \boldsymbol{x}_2)/2$ and $\Delta \boldsymbol{x} = \boldsymbol{x}_1 - \boldsymbol{x}_2$.

In equilibrium fluctuations are determined by thermodynamics:

$$ar{\phi}_{oldsymbol{Q}} = rac{c_p}{n^2} f(oldsymbol{Q}) pprox rac{c_p}{n^2} rac{1}{1+oldsymbol{Q}^2 \xi^2} \,.$$

Relaxation of fluctuations towards equilibrium

• As usual, equilibration maximizes entropy $S = \sum_i p_i \log(1/p_i)$: $s_{(+)}(\epsilon, n, \phi_Q) = s(\epsilon, n) + \frac{1}{2} \int_Q \left(\log \frac{\phi_Q}{\bar{\phi}_Q} - \frac{\phi_Q}{\bar{\phi}_Q} + 1 \right)$

Relaxation of fluctuations towards equilibrium

- As usual, equilibration maximizes entropy $S = \sum_i p_i \log(1/p_i)$: $s_{(+)}(\epsilon, n, \phi_Q) = s(\epsilon, n) + \frac{1}{2} \int_Q \left(\log \frac{\phi_Q}{\bar{\phi}_Q} - \frac{\phi_Q}{\bar{\phi}_Q} + 1 \right)$
- The equation for φ_Q is a relaxation equation with rate Γ(Q) ≈ 2DQ² for Q ≪ ξ⁻¹, D ~ 1/ξ.
- Impact on fluctuation observables: critical slowing down, "memory" effects (Berdnikov-Rajagopal, Mukherjee-Venugopalan-Yin, ...)
- Impact of fluctuations on hydrodynamics:
 - **●** "Renormalization" of bulk viscosity $ζ ~ 1/Γ_ξ ~ ξ^3$.
 - (Non-analytic) frequency dependence of ζ(ω) for $ω ≪ Γ_ξ$.
 "Long-time tails"

Implementation of Hydro+ and lessons

Rajagopal et al, <u>1908.08539</u> Du et al, <u>2004.02719</u>

- Conservation laws
- Memory and lag

Advection

An, Basar, Yee, MS, <u>1902.09517,1912.13456</u>

- To embed Hydro+ into a unified theory for critical as well as non-critical fluctuations we need a general *deterministic* (*hydro-kinetic*) formalism.
- Expand stochastic hydro eqs. in {δm, δp, δu^μ} ~ φ_A and then average, using equal-time correlator as a new variable

$$G_{AB}(x_1, x_2) \stackrel{?}{=} \langle \phi_A(x_1) \phi_B(x_2) \rangle.$$

What is "equal-time" in relativistic hydro?

• $\langle \phi(x)\phi(x) \rangle$ is singular (cutoff dependent). Renormalization?

Local equal time and *confluent* derivative

We need equal-time correlator G = ⟨φ(t, x₁)φ(t, x₂)⟩.
 But what does "equal time" mean? In what frame?
 The most natural choice is local u(x) (at x = (x₁ + x₂)/2).

• x-derivative with $y \equiv x_1 - x_2$ "fixed" w.r.t. local rest frame:

• We define *confluent* equal time correlator $\bar{G}_{AB}(x; y)$ and its Wigner transform $W_{AB}(x; q)$

Local equal time and *confluent* derivative

We need equal-time correlator G = ⟨φ(t, x₁)φ(t, x₂)⟩.
 But what does "equal time" mean? In what frame?
 The most natural choice is local u(x) (at x = (x₁ + x₂)/2).

• x-derivative with $y \equiv x_1 - x_2$ "fixed" w.r.t. local rest frame:

• We define *confluent* equal time correlator $\bar{G}_{AB}(x; y)$ and its Wigner transform $W_{AB}(x; q)$

• Expansion of $\langle T^{\mu\nu} \rangle$ in fluctuations ϕ contains

$$\langle \phi(x)\phi(x)\rangle = G(x;0) = \int \frac{d^3q}{(2\pi)^3} W(x;q).$$

The integral is divergent (in equilibrium $G^{(0)}(x;y) \sim \delta^3(y)$).

• Expansion of $\langle T^{\mu\nu} \rangle$ in fluctuations ϕ contains

$$\langle \phi(x)\phi(x)\rangle = G(x;0) = \int \frac{d^3q}{(2\pi)^3} W(x;q).$$

The integral is divergent (in equilibrium $G^{(0)}(x;y) \sim \delta^3(y)$).

Such short-distance singularities can be absorbed into redefinion of EOS (i.e., pressure) and transport coefficients:

$$\langle T^{\mu\nu}(x) \rangle = \epsilon u^{\mu} u^{\nu} + p(\epsilon, n) \Delta^{\mu\nu} + \Pi^{\mu\nu} + \left\{ G(x, 0) \right\}$$

= $\epsilon_R u_R^{\mu} u^{\nu} + p_R(\epsilon_R, n_R) \Delta_R^{\mu\nu} + \Pi_R^{\mu\nu} + \left\{ \tilde{G}(x; 0) \right\} .$

Constraints of 2nd law, conformality satisfied nontrivially. _____

Confluent derivative, connection and correlator

Take out dependence of *components* of ϕ due to change of u(x):

 $\Delta x \cdot \bar{\nabla}\phi = \Lambda(\Delta x)\phi(x + \Delta x) - \phi(x)$

Confluent two-point correlator:

$$\bar{G}(x,y) = \Lambda(x_1 - x) \langle \phi(x_1) \phi(x_2) \rangle \Lambda(x_2 - x)^T$$

(boost to u(x) – rest frame at midpoint)

$$\bar{\nabla}_{\mu}\bar{G}_{AB} = \partial_{\mu}\bar{G}_{AB} - \bar{\omega}^{C}_{\mu A}\bar{G}_{CB} - \bar{\omega}^{C}_{\mu B}\bar{G}_{AC} - \overset{\circ}{\omega}^{b}_{\mu a}y^{a}\frac{\partial}{\partial y^{b}}\bar{G}_{AB}.$$

Connection $\bar{\omega}$ corresponds to the boost Λ .

Connection $\mathring{\omega}$ makes sure derivative is independent of the choice of basis triad $e_a(x)$ needed to express $y \equiv x_1 - x_2$ in local rest frame.

We then define the Wigner transform $W_{AB}(x;q)$ of $\bar{G}_{AB}(x;y)$.

Expansion of $\langle T^{\mu\nu} \rangle$ contains $\langle \phi(x)\phi(x) \rangle = G(x;0) = \int \frac{d^3q}{(2\pi)^3} W(x;q)$.

This integral is divergent (equilibrium $G^{(0)}(x;y) \sim \delta^3(y)$).

back

Expansion of $\langle T^{\mu\nu} \rangle$ contains $\langle \phi(x)\phi(x) \rangle = G(x;0) = \int \frac{d^3q}{(2\pi)^3} W(x;q).$

This integral is divergent (equilibrium $G^{(0)}(x;y) \sim \delta^3(y)$).

Expansion of $\langle T^{\mu\nu} \rangle$ contains $\langle \phi(x)\phi(x) \rangle = G(x;0) = \int \frac{d^3q}{(2\pi)^3} W(x;q)$.

This integral is divergent (equilibrium $G^{(0)}(x;y) \sim \delta^3(y)$).

Expansion of
$$\langle T^{\mu\nu} \rangle$$
 contains $\langle \phi(x)\phi(x) \rangle = G(x;0) = \int \frac{d^3q}{(2\pi)^3} W(x;q)$.

This integral is divergent (equilibrium $G^{(0)}(x;y) \sim \delta^3(y)$).

Renormalized e.o.s. and transport coefficients

- Fluctuation corrections to kinetic coefficients are positive.
- Corrections to pressure and bulk viscosity vanish for conformal e.o.s.

$$p_R(\epsilon_R, n_R) = p(\epsilon_R, n_R) + \frac{T\Lambda^3}{6\pi^2} \left((1 - c_s^2 - 2\dot{T} + \dot{c}_s) + \frac{1}{2} (1 - \dot{c}_p) \right),$$

$$\eta_R = \eta + \frac{T\Lambda}{30\pi^2} \left(\frac{1}{\gamma_L} + \frac{7}{2\gamma_\eta} \right),$$

$$\zeta_R = \zeta + \frac{T\Lambda}{18\pi^2} \left(\frac{1}{\gamma_L} (1 - 3\dot{T} + 3\dot{c}_s)^2 + \frac{2}{\gamma_\eta} \left(1 - \frac{3}{2} (\dot{T} + c_s^2) \right)^2 + \frac{9}{4\gamma_\lambda} (1 - \dot{c}_p)^2 \right),$$

$$\lambda_R = \lambda + \frac{T^2 n^2 \Lambda}{3\pi^2 w^2} \left(\frac{c_p T}{(\gamma_\eta + \gamma_\lambda) w} + \frac{c_s^2}{2\gamma_L} \right).$$

$$\gamma_{\eta} \equiv \frac{\eta}{w}, \quad \gamma_{\zeta} \equiv \frac{\zeta}{w}, \quad \gamma_{\lambda} \equiv \frac{\kappa}{c_p} = D, \quad \dot{X} \equiv \left(\frac{\partial \log X}{\partial \log s}\right)_m$$

non-Gaussian fluctuations are sensitive signatures of the critical point
Nonlinearity and multiplicative noise

An et al 2009.10742, PRL

Stochastic approach (with multiplicative noise):

ć

$$\partial_t \breve{\psi} = -\nabla \cdot \left(\mathsf{Flux}[\breve{\psi}] + \mathsf{Noise} \right), \qquad \langle \mathsf{Noise} \, \mathsf{Noise} \, \rangle \sim 2Q[\breve{\psi}]$$

• Deterministic approach (Hydro+). *Infinite* hierarchy of coupled equations for cumulants $G_n^c \equiv \langle \delta \vec{\psi} \dots \delta \vec{\psi} \rangle^c$:

$$\begin{aligned} \partial_t \psi &= -\nabla \cdot \mathsf{Flux}[\psi, G, G_3^{\mathsf{c}}, G_4^{\mathsf{c}}, \ldots];\\ \partial_t G &= \mathsf{L}[\psi, G, G_3^{\mathsf{c}}, G_4^{\mathsf{c}}, \ldots];\\ \partial_t G_3^{\mathsf{c}} &= \mathsf{L}_3[\psi, G, G_3^{\mathsf{c}}, G_4^{\mathsf{c}}, \ldots]; \end{aligned}$$

Controlled perturbation theory

- Small fluctuations are almost Gaussian
- Introduce expansion parameter ε , so that $\delta \breve{\psi} \sim \sqrt{\varepsilon}$.

Then $G_n^{c} \equiv \varepsilon^{n-1}$ and to leading order in ε :

$$\partial_t \psi = -\nabla \cdot \mathsf{Flux}[\psi] + \mathcal{O}(\varepsilon);$$

$$\partial_t G = -2\Gamma(G - \bar{G}[\psi]) + \mathcal{O}(\varepsilon^2);$$

$$\partial_t G_n^{\mathsf{c}} = -n\Gamma(G_n^{\mathsf{c}} - \bar{G}_n^{\mathsf{c}}[\psi, G, \dots, G_{n-1}^{\mathsf{c}}]) + \mathcal{O}(\varepsilon^n);$$

÷

To leading order, the equations are iterative and "linear".

■ In hydrodynamics the small parameter is $(q/\Lambda)^3$, i.e., fluctuation wavelength $1/q \gg$ size of hydro cell $1/\Lambda$ (UV cutoff).

Diagrammatic representation

Systematically expand in ε and truncate at leading order:

J Leading order in $\varepsilon \Leftrightarrow$ tree diagrams.

In higher-orders, loops describe feedback of fluctuations (e.g., long-time tails).

Generalizing Wigner transform

Definition:

$$W_n(\boldsymbol{x}; \boldsymbol{q}_1, \dots, \boldsymbol{q}_n) \equiv \int d\boldsymbol{y}_1^3 \dots \int d\boldsymbol{y}_n^3 G_n\left(\boldsymbol{x} + \boldsymbol{y}_1, \dots, \boldsymbol{x} + \boldsymbol{y}_n\right)$$

$$\delta^{(3)}\left(\frac{\boldsymbol{y}_1 + \dots + \boldsymbol{y}_n}{n}\right) e^{-i(\boldsymbol{q}_1 \cdot \boldsymbol{y}_1 + \dots + \boldsymbol{q}_n \cdot \boldsymbol{y}_n)};$$

$$G_n\left(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n\right) = \int \frac{d\boldsymbol{q}_1^3}{(2\pi)^3} \ldots \int \frac{d\boldsymbol{q}_n^3}{(2\pi)^3} W_n(\boldsymbol{x},\boldsymbol{q}_1,\ldots,\boldsymbol{q}_n)$$
$$\delta^{(3)}\left(\frac{\boldsymbol{q}_1+\ldots+\boldsymbol{q}_n}{2\pi}\right) e^{i(\boldsymbol{q}_1\cdot\boldsymbol{x}_1+\ldots+\boldsymbol{q}_n\cdot\boldsymbol{x}_n)}.$$

- **Properties similar to the usual** (n = 2) Wigner transform.
- Takes advantage of the scale separation: long-scale *x*-dependence and short-scale *y_n*-dependence.

Example: expansion through a critical region

- Two main features:
 - Lag, "memory".
 - Smaller Q slower evolution. Conservation laws.
- Critical point signatures depend on the scale of fluctuations probed.

