Licia Verde

ICREA & ICC-UB-IEEC Barcelona, Spain

Neutrino properties from cosmology

icc.ub.edu.liciaverde

MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD

Other things we can talk about

- Cosmology in general
- arXiv
- Scientific publishing process
- Diversity equity inclusion in STEMS/Academia

A possible reference point

Particle data group, Neutrinos in Cosmology, Lesgourgues & Verde Chapter 26 <u>https://pdg.lbl.gov/2022/reviews/astro-cosmo.html</u> (fully updated every 2 years, revised every year*)

Cosmology is special

We can't make experiments, only observations

We have to use the entire Universe as a detector: the detector is given, we can't tinker with it. (Jim Peebles)

This has driven a massive experimental effort

• Observe as much as possible of the Universe.

The standard model of cosmology The ΛCDM model

few cosmological parameters: "Just 6 numbers"....

....describe observations of the Universe across some 14 billion years of evolution

The model's parameters are now determined with % accuracy: Precision cosmology!

What happened in these last 2 decades?

The Λ CDM model has survived unscathed an avalanche of data

How's that useful?

The Universe back then was made of a very hot and dense "gas", so it was emitting radiation

This is the radiation we see when we look at the CMB

Uniform , but with tiny (contrast x 100000) density (and temperature) ripples

Ripples in a gas? SOUND WAVES!

Truly a cosmic symphony...

We are seeing sound!

These tiny fluctuations, quantitatively, give rise galaxies

We try to listen to the sound and figure out how the instrument is made

The ΛCDM model has survived unscathed an avalanche of data

Avalanche of data over the last ~10 yr

Detailed statistical properties of these ripples tell us a lot about the Universe

Avalanche of data over the last ~10 yr

Planck 2013

Detailed statistical properties of these ripples tell us a lot about the Universe

BAOS Baryon acoustic oscillations

Seeds of galaxies.....Like throwing stones in a pond, or rain...

A standard ruler (well... in 3d a standard bubble.. But ok)

The ruler is the sound horizon at recombination (CMB), at radiation drag (LSS) but it is the same ruler. Symbols: r_s or r_d

Effect is a "classic" AP

Baryon acoustic oscillations (BAO) as a Standard ruler

- Physics: sound waves in early Universe propagate until radiation and matter decouple
- Imprints a scale standard ruler
- Key Observable. (sound horizon)
- Useful for:
 - geometry of Universe (Dark Energy equation of state, or modifications to GR)
 - early Universe physics (well known) sets it

CMB and early universe physics in LCDM constrain the standard ruler length to 0.2%

Physical information from large-scale structure

Extremely successful standard cosmological model Look for deviations from the standard model

Test physics on which it is based and beyond it

- Dark energy
- Nature of initial conditions: Adiabaticity, Gaussianity
- <u>Neutrino properties</u>
- Inflation properties
- Beyond the standard model physics...

We only have one observable universe The curse of cosmology

We can only make observations (and only of the observable Universe) not experiments: we fit models (i.e. constrain numerical values of parameters) to the observations: Almost <u>Any statement is model dependent</u>

Gastrophysics and non-linearities get in the way : Different observations are more or less "trustable", it is however somewhat a question of personal taste (think about Standard & Poor's credit rating for countries): <u>Any statement depends on the data-set chosen and to some extent the</u> <u>analysis methodology</u>

Results will depend on the data you (are willing to) consider. I try to use > A rating ;)

....And the Blessing

We can observe all there is to see

Cosmic Neutrino Background

A relict of the big bang, similar to the CMB except that the CvB decouples from matter after 2s (~ MeV) not 380,000 years

At decoupling they are still relativistic ($mv \ll Tv$) \rightarrow large velocity dispersions (1eV ~ 100 Km/s)

Recall: T~1eV Matter-radiation equality, T=0.26eV Recombination

60Billion nu/s/cm² from the sun ~300nu/cm³ from CvB

Cosmic Neutrino Background

60Billion nu/s/cm² from the sun ~100nu/cm³ from CvB

Compare that with 1.d-7 baryons

Is generic prediction of the standard hot big bang model.

indirectly confirmed by the accurate agreement of predictions and observations of

- a) the primordial abundance of light elements
- b) the power spectra of CMB anisotropies
- c) the large scale clustering of cosmological structures.

such good agreement would fail dramatically without a CvB & the standard neutrino decoupling model.

What is a neutrino? (for cosmology)

- Behaves like radiation at T~ eV (recombination/decoupling)
- Eventually (possibly) becomes non-relativistic, behaves like matter
- Small interactions (not perfect fluid)
- Has a high velocity dispersion (is "HOT")

Neutrinos

The **only** known **particle** behaving as **radiation** at early time (during the CMB acoustic oscillations) and as **dark matter (not cold**) at late time (during structure formation) This has consequences for <u>the background evolution</u> and the <u>structure growth</u>.

For aficionados

- Neutrinos are in equilibrium with the primeval plasma through weak interaction reactions. They decouple from the plasma at a temperature 1MeV
- We then have today a Cosmological Neutrino Background at a temperature

$$T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma} \approx 1.945 K \longrightarrow k T_{\nu} \approx 1.68 \cdot 10^{-4} eV$$

at least two neutrino mass eigenstates are non-relativistic today

With a density of:

$$n_f = \frac{3}{4} \frac{\varsigma(3)}{\pi^2} g_f T_f^3 \to n_{v_k, \bar{v}_k} \approx 0.1827 \cdot T_v^3 \approx 112 cm^{-3}$$

That, for a massive neutrino translates in:

$$\Omega_{\nu}h^2 = \frac{\sum_{\nu} m_{\nu}}{93.14eV}$$

Neutrinos affect the growth of cosmic clustering and (indirectly) the expansion history so they can leave key imprints on the cosmological observables

CvB

PHYSICAL REVIEW

VOLUME 92, NUMBER 6

DECEMBER 15, 1953

Physical Conditions in the Initial Stages of the Expanding Universe*.†

RALPH A. ALPHER, JAMES W. FOLLIN, JR., AND ROBERT C. HERMAN Applied Physics Laboratory, The Johns Hopkins University, Silver Spring, Maryland (Received September 10, 1953)

$$T_{\mathcal{V}} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma} \qquad \rho_{\rm rad} = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{\frac{4}{3}} N_{\rm eff}\right] \rho_{\gamma}$$

Neff should be 3.046 (if they are neutrinos)

Planck 2018 (cosmology)

Relict neutrinos influence in cosmology

Primordial nucleosynthesis

T<eV

N_{eff} mass

How many "neutrinos"? (dark radiation)

Have we really seen the cosmic neutrino background? (i.e. Are we really sure it's neutrinos?)

Their total mass M_{ν} or Σ (and are we really sure??)

The individual masses (hierarchy)

Mostly model-dependent statements: measuring cosmological parameters values**

Neutrino mass: Physical effects

Total mass >~0.6 eV become non relativistic before recombination CMB*

Total mass <~0.6 eV become non relativistic after recombination: alters matter-radn equality but effect can be "cancelled" CMB by other parameters ______Degeneracy

After recombination

FINITE NEUTRINO MASSES SUPPRESS THE MATTER POWER SPECTRUM ON SCALES SMALLER THAN THE FREE-STREAMING LENGTH

Different masses become non-relativistic a slightly different times Cosmology can yield information about neutrino mass hierarchy

Ma '96

Cosmology is key in determining the absolute mass scale

This means that neutrinos contribute at least to ~0.5% of the total matter density

Cosmology is key in determining the absolute mass scale

This means that neutrinos contribute at least to ~0.5% of the total matter density

The KATRIN Experiment

Ambitious terrestrial experiment

Cosmology is key in determining the absolute mass scale

This means that neutrinos contribute at least to ~0.5% of the total matter density

Cosmology is key in determining the absolute mass scale

This means that neutrinos contribute at least to ~0.5% of the total matter density

Neutrino mass: Physical effects

Total mass >~0.6 eV become non relativistic before recombination CMB*

After recombination

FINITE NEUTRINO MASSES SUPPRESS THE MATTER POWER SPECTRUM ON SCALES SMALLER THAN THE FREE-STREAMING LENGTH

Different masses become non-relativistic a slightly different times Cosmology can** yield information about neutrino mass hierarchy

CMB back to the rescue

Lensing

From Hu Okamoto 2001

CMB back to the rescue

Lensing

Neutrino mass: Physical effects

There are many H₀

Not all measurements measure directly the current expansion rate

Model dependent vs model independent

This type of plot change by week soo... just illustrative

Bernal et al. 2102.05066

Including large-scale structure clustering

Pros: see the "signature" scale-dependent clustering suppression

Cons: astrophysics, bias, non-linearities

Possible approach & useful exercise: use completely different tracers and see if there is agreement

Limits on the sum of the masses

2		
	Model	95% CL (eV)
CMB alone		P18
Pl18[TT+lowE]	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.54
Pl18[TT,TE,EE+lowE]	$\Lambda { m CDM} + \sum m_{ u}$	< 0.26
CMB + probes of background evolut	ion	
Pl18[TT+lowE] + BAO	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.16
Pl18[TT,TE,EE+lowE] + BAO	$\Lambda { m CDM} + \sum m_{ u}$	< 0.13
	Г)iValentino et al 19
Pl18[TT,TE,EE+lowE]+BAO	$\Lambda \text{CDM} + \sum m_{\nu} + 5$ params.	< 0.515
CMB + LSS		
Pl18[TT+lowE+lensing]	$\Lambda { m CDM} + \sum m_{ u}$	< 0.44
Pl18[TT,TE,EE+lowE+lensing]	$\Lambda { m CDM} + \sum m_{ u}$	< 0.24
CMB + probes of background evolut	ion + LSS	
Pl18[TT+lowE+lensing] + BAO	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.13
Pl18[TT,TE,EE+lowE+lensing] + BAO	$\Lambda { m CDM} + \sum m_{ u}$	< 0.12
Pl18[TT,TE,EE+lowE+lensing] + BAO+I	Pantheon $\Lambda \text{CDM} + \sum m_{\nu}$	< 0.11
eBOSS CMB+BAO+RSD	eBOSS (Alam et al 2021)	<0.102
eBOSS CMB+BAO+RSD+Sne (*)		<0.099
eBOSS CMB+BAO+RSD+Sne+Lva Pa	alangue delabrouille et al 2020	<0.089

What's RSD?

Beyond BAO: Redshift space distortions (RSD)

But we don't, use redshifts If we co Mock (simulated) survey

If we could measure distances...

Correlation function...

Beyond BAO: Redshift space distortions (RSD)

Redshift space distortions: peculiar velocities are sourced by gravitational pull of the inhomogeneities measure growth of structure i.e. f σ 8

2001 2dFGRS, Peacock et al.

2021 e-BOSS

The Lymanalpha forest

Limits on the sum of the masses

95%CL

eBOSS CMB+BAO+RSD	eBOSS (Alam et al 2021)	<0.102
eBOSS CMB+BAO+RSD+Sne (*)		< 0.099
eBOSS CMB+BAO+RSD+Sne+Lva	Palanque Delabrouille et al 2020	<0.089

Use (almost) everything we've got...

OK or not OK we can discuss

Expansion history vs growth

Boyle & Komatsu 2019

Expansion history vs growth

Forecast for Euclid

Boyle & Komatsu 2019

Neutrino mass limits

Implications I

This means that neutrinos contribute at least to ~0.5% of the total matter density

Implications II

Fig. adapted* from M. Lattanzi

* Taken from google

Implications III

Of course $<T \ v \partial \beta \beta$ experiments could see something, that would be interesting

Implications: tldnr

Cosmology is key to determine neutrino masses

The pessimist: The inverted hierarchy is under pressure

The optimist: If IH then a measurement of Mv is just around the corner!

recap

- There is a CvB
- Cosmology places stringent limits on $\Sigma m_{_{\! V}}$
- If IH then a measurement is around the corner
- However, IH is disfavoured from a Bayesian perspective
- This has important implications
- What is KATRIN measures something?

