Status and Perspectives of Direct Dark Matter Detection

Manfred Lindner

INTERNATIONAL SCHOOL OF SUBNUCLEAR PHYSICS 58th Course: *GRAVITY AND MATTER IN THE SUBNUCLEAR WORLD*, June 15-24, 2023

Competing Dark Matter Directions

Gravity

Something wrong with GR?

Einstein Field Equations:

- From line element: metric, Bianchi identities, Riemann tensor, Ricci scalar
- 2) Hilbert-Einstein action
- \rightarrow variation \rightarrow field equations

$$I_{HE} = rac{1}{2\kappa} \int d^4 x \sqrt{-g} [R + \mathcal{L}_m].$$

 $G_{\mu
u} = \kappa T_{\mu
u}$

Credit: J. Chagoya

Competing Dark Matter Directions

Particles

DM candidates should

- have no EM interaction
- not couple to QCD
- may have weak interaction
- must couple to gravity
- must not spoil things:
 - BBN
 - ...
 - must not be excluded:
 - LHC, v-experiments, DM searches, ...
- solve known problems
 convincing extensions (not probabilistic)

Competing Dark Matter Directions

Gravity

Particles

MOND

a simple one scale modification → fails badly

Other

more elaborate GR modifications

or

a suitable population (mass, number) of black holes BSM physics motivated by SM problems + WIMPs (neutralinos) + axions + sterile v's

Correct thermal abundance + WIMPs - dark photons - ALPs ? other new particles

- ----

WIMPs combine both aspects in an attractive way: BSM + abundance

Black Holes as Dark Matter

The cosmic Matter Balance

M. Lindner, MPIK

The WIMP Miracle

- Reheating → all particle types produced
- Evolution of original plasma by:
 - expansion (dilution)
 - decays
 - interactions \rightarrow conversion processes

Evolution of original DM density:

➔ Boltzmann equation

$$\frac{dn_{\chi}}{dt} + 3H(T)n_{\chi} = -\langle \sigma v \rangle (n_{\chi}^2 - n_{\chi,eq}^2)$$

Remarkable coincidence:

- Correct (cold) DM abundance
 → WIMP masses O(10-1000 GeV)
- SM hierarchy problem
 - \rightarrow TeV BSM physics
 - \rightarrow BSM motivated DM candidates
- → Automatically ~ correct abundance

Hunting WIMPS in different Ways

known Standard Model (SM) particles interact with WIMPs: assumptions...

indirect detection

FERMI, PAMELA, AMS, HESS, IceCube, CTA, HAWC...

- astronnomical uncertainties...
- signal without doubt from DM?

colliders

may detect new particlesis it DM (lifetime, abundance)?

WIMP wind : 220km/s from Cygnus → see the DM in the Universe

Dark Matter Production at Colliders

DM particles do not interact via electromagnetic interaction

➔ no DM tracks in a detector

DM particles carry energy & momentum →missing energy

two approaches at colliders for DM search: 1) direct production of DM particles

annihilation of standard model particles into a pair of DM particles

2) indirect production of DM particles

search for dedicated decay chains with DM-like particles using a dedicated model (e.g. SUSY)

Drawbacks:

- a signal does not guarantee a long life-time
- unrelated to DM density in the Universe

trigger and momentum

missing energy

EFT Interpretation

For q << mediator mass M_{med} →Interaction described by M* and m_{DM}

type of interaction \rightarrow different operators

	Name	Initial state	Type	Operator
most	D1	qq	scalar	$rac{m_q}{M^3}ar\chi\chiar q q$
common:	D5	qq	vector	$rac{1}{M_{*}^{2}}ar{\chi}\gamma^{\mu}\chiar{q}\gamma_{\mu}q$
	D8	qq	axial-vector	$\frac{1}{M_*^2} \bar{\chi} \gamma^\mu \gamma^5 \chi \bar{q} \gamma_\mu \gamma^\mu q$
	D9	qq	tensor	$\frac{1}{M_*^2} \bar{\chi} \sigma^{\mu u} \chi \bar{q} \sigma_{\mu u} q$
	D11	gg	scalar	$\frac{1}{4M_*^3}\bar{\chi}\chi\alpha_s(G^s_{\mu u})^2$

D1, D5, D11 spin independent (SI), D8, D9 = SD

Mediator induces also SM→SM processes

→ LHC sets limits on g²_{SM}/M²_{med} (mod. m_{DM})
 → Unless g_{SM} is tiny TeV-ish limits on M_{med}.

g_{DM} =1 is an assumption → could be tiny → weaker DM limits *or* a full model → more signatures/effects & constraints

M. Lindner, MPIK

DM motivated Extensions have other Consequences

- More particles...
- All existing particles produced in Big Bang and later (decays, ...)
- Some particles may be stable
- Very long-lived due to small parameters → natural?
- Effects of unstable states +/ → on the early Universe
 → on collider physics

Warning: Your DM model may affect many other known things!

Dark Matter at the LHC

- Generic kinematics: weak dependence on WIMP mass for m_{DM} << beam energy

• Life is more complex...

- many conceivable candidates
- detection efficiencies, ...
- → EFT or simplified models

=parametrizion – not always appropriate

- g_{DM} = assumptions *or* full model +...

• LHC:

- can exclude a DM candidate
- can establish a candidate
- does not test if it is DM in Univ.: long lived? abundance?

Direct Detection: Billard with invisible Balls

- WIMPs scatter off atoms in a detector → detect the signal...
- Maximal momentum transfer → M_{WIMP} ~ M_{atom}
 Additionally: clean, transparent, high density, no free charges,
 → liquid Xenon (ca. -100 degree)
 ← → rarest stable element

The WIMP Wind

- Solar system is about 8.5 kpc from galactic center
- Is pulled towards the Cygnus-Cluster → ~ 220 km/s
 → flow of DM particles from Cygnus → WIMP wind

The generic WIMP Cross-Section

• Quantum mechanics: wavelength $\lambda \sim 1/mass$

"size = area" of a particle: $\pi\lambda^2 = \pi/m^2$

cross section: area * coupling strength

$\sigma \sim O(0.001-1.0)^2 g_2^2$	π/m^2	or tuning, symmetry,
modelsome weakparameterscoupling	area	←→ abundance

→ natural range for a 50GeV WIMP $\sigma \sim 10^{-42} - 10^{-48} \text{ cm}^2$

known amount of DM →~WIMP flux → rate@direct.det.
→ we know size/sensitivity of a detector which can cover the most interesting natural WIMP space

The Players and their main Territory

Direct Detection Techniques (WIMPs)

- Detection of DM = see what the Universe is made of
 - → WIMP wind (known flux) scatters on target atoms → signal...

Converting WIMP Scattering into Signals

Light – ionization – heat: 3 examples

- semiconductors (Ge)
 → ionization → pulses
- crystals (e.g. CaWO₄)
 → heat + light
- liquid noble gases @TPC's
 → light + ionization

The XENON Dark Matter Program

The XENON program at Gran Sasso, Italy (3600 mwe)

Trentino-Alta Josephantin La	XENON10	XENON100	XENON1T &	& XENONnT
Vale d'Asta Piemonte Liguria Sardegna Sardegna Sardegna Sicilia				
Period	2005-2007	2008-2016	2012-2018	2019-202n
Total (active) mass	25 kg (14kg)	161 kg (62 kg)	3200 kg (2t)	~8400 kg (5.9t)
Drift length	15 cm	30 cm	100 cm	150 cm
Status	Completed (2007)	Completed (2016)	Completed (2019)	Running
σ _{SI} limit (@50 GeV/c²)	$8.8 \times 10^{-44} \text{ cm}^2$	$1.1 \times 10^{-45} \text{ cm}^2$	$1.6 \times 10^{-47} \text{ cm}^2$	$\sim 10^{-48} \text{ cm}^2$

XENONnT prepared while XENON1T was running → switching gears

XENON1T @ LNGS

Direct Dark Matter Detection

Background reduction

→ extremely challenging:

- graded shielding
 - go deep underground
 - water
 - veto systems
- material selection
 - screening (γ , Rn, ...)
 - distillation
- cryogenic distillation
- pulse shape analysis

_

_

M. Lindner, MPIK

- reconstruct x,y,z

Next:

- fiducialize
- remove bg events

M. Lindner, MPIK

XENON1T: NR Search for WIMPs

M. Lindner, MPIK

XENON1T: Results on WIMPs

→ Most stringent result on SI scattering of WIMP Dark Matter down to 3 GeV/c² masses [PRL 121, 111302 + PRL 123, 251801]

Double Electron Capture of 124Xe

 $T = 1.8 \pm 0.5_{\text{stat}} \pm 0.1_{\text{sys}} \times 10^{22} yr$ No rejection significane: 4.4σ

about one trillion times the age of the Universe
 longest half-life ever measured directly
 Nature 568 (2019) 7753, 532-535

Search for New Physics with ER Events

Phys. Rev. D 102, 072004

Surface Neutron AC WIMP ER 8000 Large exposure: 60 **keV**_{NR} 0.65 tonne-years 4000 **Unprecedented low** 2000 15 . background: cS2_b [PE 1000 76 ± 2 events/t/yr/keV Low threshold: 400 1 keV_{ee} 200

03

10

20

30

50

40

cS1 [PE]

60

70

Energy Reconstruction and Resolution

Combine light and charge

$$E = W \cdot (n_{ph} + n_e)$$
$$= W \cdot \left(\frac{S1}{g_1} + \frac{S2}{g_2}\right)$$

\rightarrow detector constants g₁ and g₂

- Anti-correlation between light and charge
 Checked with calibration sources
- Energy resolution < 5 % at 50 keV</p>

Data Selection ands Detection Efficiency

- Science Run I: Feb. 2017 Feb. 2018 → 226.9 live days
- Fiducial volume: 1 tonne
- Energy range for single scatter events: [1,210] keV_{ee}
- Data quality cuts
- Include reconstruction efficiency & threshold at 10% detection efficiency

Distribution of Events

- [1 120] keV
- [1 7] keV

Detector Calibration

- ²²⁰Rn (²¹²Pb, β-decay) calibration data validates our model even below 1keV
- No threshold excess
- No large systematics
- Uses the aame un-binned likelihood framework as in the main analysis

Background Model

Background prediction in [1,210] keV interval based on:

- knowledge from material screening and control measurements
- GEANT4 simulations smeared with detector effects
- 10 components

Internal (uniform in volume) ²¹⁴Pb (main contribution)

⁸⁵Kr (distilled out)
¹³⁶Xe, ¹²⁴Xe [Nature 568,532]
^{83m}Kr (calibration source issue)

Neutron induced ^{131m}Xe, ¹³³Xe, ¹²⁵

Solar neutrinos

Materials ← → radio-essay & GEANT4

Time-dependency

The Result

- Exposure: 0.65 t*y
- Single scatter events within [1,210] keV_{ee}
- Nice agreement at higher recoil energies

→ Excess between 1-7 keV:
285 events observed
(232 ±15) expected from best-fit

Explanation #1: 3.5σ fluctuation

- Good fit observed over most of the energy range
- Consistent with expectations

L

 Unbinned maximum likelihood fit profiling over nuisance parameters:

$$\begin{aligned} (\mu_s, \boldsymbol{\mu_b}, \boldsymbol{\theta}) &= \operatorname{Poiss}(N | \mu_{tot}) \\ &\times \prod_{i}^{N} \left(\sum_{j} \frac{\mu_{b_j}}{\mu_{tot}} f_{b_j}(E_i, \boldsymbol{\theta}) + \frac{\mu_s}{\mu_{tot}} f_s(E_i, \boldsymbol{\theta}) \right) \\ &\times \prod_{m} C_{\mu_m}(\mu_{b_m}) \times \prod_{n} C_{\theta_n}(\theta_n), \\ \mu_{tot} &\equiv \sum_{j} \mu_{b_j} + \mu_s, \end{aligned}$$

 → (76 ± 2) events / (t*y*keV) in [1,30] keV window
 Lowest bg rate ever achieved in this energy range
 <u>Explanation #2:</u> Some unexpeccted new background?

Explanation #3: New Physics

- A singal from where?
- Sun:
 - neutrinos (exist, but CEvNS too small $\leftarrow \rightarrow$ neutrino floor)
 - \rightarrow some non-standard v interaction with electrons
 - axions or ALPS produced in the sun
- DM density/flow
 - some new particle
 - → not WIMPs
 - → light and not hot DM? A new light boson?
- Diffuse background of invisible particles
 consistency with other searches/limits

Many papers which try to explain the XENON1T result
→ mostly 3 main directions: Axions, v's, light bosons

> stay tuned: analysis of 1st run of XENONnT is on-going...

XENON1T → XENONnT

Main changes for XENONnT

- Total 8.4 t LXe
- 5.9 t in TPC
- ~ 4 t fiducial
- 248 → 494 PMTs

Neutron

- Inner region of existing muon veto
- · optically separate
- 120 additional PMTs
- Gd in the water tank
- 0.5 % Gd₂(SO₄)₃

222Rn distillation

- Reduce Rn (²¹⁴Pb) from pipes, cables,
 - cryogenic system
- New system, PoP in XENON1T

D purification

- Faster xenon cleaning
- 5 L/min LXe (2500 slpm)
- XENON1T ~ 100 slpm

LUX-ZEPLIN (LZ)

PandaX-4T at CJPL

- Design goal: - High signal efficiency - Large and uniform electric field - Veto ability Top Cu plate Teflon supporter Electrodes and shaping rings Bottom Cu plate - Bottom PMT array, 3"
- 2017-2018:Produce all components and test
- 2019-2020:On-site assembling and commissioning
- 2021-2022:Data-taking
- eventual goal: ~30 t at CJPL to reach neutrino floor sensitivity

Overall Status and Plans

- XENONnT is analyzing data from 1^{st} science run \rightarrow stay tuned!
- 2nd science run started
- LZ (similar size) is also operational
 → competition
- DARWIN (XENON + few more) →
 50t target mass
- DARWIN-LZ-consortium:
 - merge expertise, ...

JCAP 11, 017 (2016) www.darwin-observatory.org

Spin Independent (SI) WIMP Interaction

$0\nu\beta\beta$ with ¹³⁶Xe

$Q_{BB} = (2458.7 \pm 0.6) \text{ keV}$ **Assume:** - 6t fiducial - energy resolution at $Q_{\beta\beta} \simeq 1\%$ ²¹⁴Bi → ²¹⁴Po + e⁻ + y (2448 keV) 4.6 events/year within ±3o Total Rate [evts \times t⁻¹ \times y⁻¹ \times keV⁻¹] 2v6 Materials 10-2 222Rn 2400 2500 2100 2200 2300 2600 2700 Energy [keV]

→ 3.5 t ¹³⁶Xe in 40t without enrichment!

8.9% natural abundance

JCAP 01, 044 (2014)

Sensitivity @ 95% CL: • 30 t*yr \rightarrow T_{1/2} > 5.6 × 10²⁶ yr • 140 t*yr \rightarrow T_{1/2} > 8.5 × 10²⁷ yr

IMPORTANT: DARWIN might become a powerful, cost effective and time-wise competitive 0vββ experiment (no enrichment!)

LAr based TPCs

Darkside 20k @LNGS: 40 t LAr - see talk by A. Zoccoli

➔ 300 t of underground argon

Conclusions

- Direct detection of dark matter <u>is essential</u> for proving that it is made of particles
- Many candidates... $\leftarrow \rightarrow$ spectrum of theoretical ideas
- WIMPs, axions, sterile v's appear best motivated
 → find them or paradigms will change!
- Strong competition \rightarrow impressive sensitivity gain/time
- New results expected...
- Exciting longer term projects...
- Options for the discovery of other new physics (v's, ...)
 → will remain an exciting field