INTRO TO PHENOMENOLOGY WITH MASSIVE NEUTRINOS IN 2022

Concha Gonzalez-Garcia (YITP-Stony Brook & ICREA-University of Barcelona) 58th International School of Subnuclear Physics Erice, June 16th, 2022

INTRO TO PHENOMENOLOGY WITH MASSIVE NEUTRINOS IN 2022

Concha Gonzalez-Garcia

(ICREA-University of Barcelona & YITP-Stony Brook)

OUTLINE

- Historic Introduction to the SM of Massless Neutrinos
- Introducing ν mass: Dirac vs Majorana, Lepton mixing, Flavour Oscillations
- Summary of Flavour Oscillation Observations
- Status of 3ν global description
- Explorations beyond 3ν 's: steriles,NSI's,Z's...

- At end of 1800's radioactivity was discovered and three types identified: α, β, γ
 β : an electron comes out of the radioactive nucleus.
- Energy conservation $\Rightarrow e^-$ should have had a fixed energy

 $(A,Z) \rightarrow (A,Z+1) + e^- \Rightarrow E_e = M(A,Z+1) - M(A,Z)$

- At end of 1800's radioactivity was discovered and three types identified: α, β, γ
 β : an electron comes out of the radioactive nucleus.
- Energy conservation $\Rightarrow e^-$ should have had a fixed energy

 $(A, Z) \rightarrow (A, Z + 1) + e^- \Rightarrow E_e = M(A, Z + 1) - M(A, Z)$ But 1914 James Chadwick showed that the electron energy spectrum is continuous

At end of 1800's radioactivity was discovered and three types identified: α, β, γ
 β : an electron comes out of the radioactive nucleus.

• Energy conservation $\Rightarrow e^-$ should have had a fixed energy

 $(A, Z) \rightarrow (A, Z + 1) + e^- \Rightarrow E_e = M(A, Z + 1) - M(A, Z)$ But 1914 James Chadwick showed that the electron energy spectrum is continuous

Do we throw away the energy conservation?

Bohr: we have no argument, either empirical or theoretical, for upholding the energy principle in the case of β ray disintegrations

• The idea of the neutrino came in 1930, when W. Pauli tried a desperate saving operation of "the energy conservation principle".

In his letter addressed to the *Liebe Radioaktive Damen und Herren* (Dear Radioactive Ladies and Gentlemen), the participants of a meeting in Tubingen. He put forward the hypothesis that a new particle exists as *constituent of nuclei, the neutron* ν , able to explain the continuous spectrum of nuclear beta decay

 $(A,Z) \rightarrow (A,Z+1) + e^- + \nu$

• The idea of the neutrino came in 1930, when W. Pauli tried a desperate saving operation of "the energy conservation principle".

In his letter addressed to the *Liebe Radioaktive Damen und Herren* (Dear Radioactive Ladies and Gentlemen), the participants of a meeting in Tubingen. He put forward the hypothesis that a new particle exists as *constituent of nuclei, the neutron* ν , able to explain the continuous spectrum of nuclear beta decay

 $(A,Z) \rightarrow (A,Z+1) + e^- + \nu$

• The ν is light (in Pauli's words:

 m_{ν} should be of the same order as the m_e), neutral and has spin 1/2

Fighting Pauli's "Curse": *I have done a terrible thing, I have postulated a particle that cannot be detected.*

Concha Gonzalez-Garcia

Problem: Quantitatively: a ν sees a proton of area:

$$\sigma^{\nu p} \sim 10^{-38} \mathrm{cm}^2 \frac{E_{\nu}}{\mathrm{GeV}}$$

Problem: Quantitatively: a ν sees a proton of area:

$$\sigma^{\nu p} \sim 10^{-38} \mathrm{cm}^2 \frac{E_{\nu}}{\mathrm{GeV}}$$

• So let's consider the atmospheric ν 's:

$$\Phi_{\nu}^{\text{ATM}} = 1 \,\nu / (\,\text{cm}^2 \text{ second}) \,\text{y} \,\langle E_{\nu} \rangle = 1 \,\text{GeV}$$

• How many interact?

Problem: Quantitatively: a ν sees a proton of area:

$$\sigma^{\nu p} \sim 10^{-38} \mathrm{cm}^2 \frac{E_{\nu}}{\mathrm{GeV}}$$

• So let's consider the atmospheric ν 's:

$$\Phi_{\nu}^{\text{ATM}} = 1 \nu / (\text{cm}^2 \text{ second}) \text{ y } \langle E_{\nu} \rangle = 1 \text{ GeV}$$

• How many interact? In a human body

$$N_{\text{int}} = \Phi_{\nu} \times \sigma^{\nu p} \times N_{\text{prot}}^{\text{human}} \times T_{\text{life}}^{\text{human}}$$

$$N_{\text{protons}}^{\text{human}} = \frac{M^{\text{human}}}{gr} \times N_A = 80 \text{kg} \times N_A \sim 5 \times 10^{28} \text{protons}$$

$$T^{\text{human}} = 80 \text{ years} = 2 \times 10^9 \text{ sec}$$

$$M \times T \equiv \text{Exposure}$$

$$\text{Exposure}_{\text{human}}$$

$$\sim \text{Ton} \times \text{year}$$

Problem: Quantitatively: a ν sees a proton of area:

$$\sigma^{\nu p} \sim 10^{-38} \mathrm{cm}^2 \frac{E_{\nu}}{\mathrm{GeV}}$$

• So let's consider the atmospheric ν 's:

$$\Phi_{\nu}^{\text{ATM}} = 1 \nu / (\text{cm}^2 \text{ second}) \text{ y } \langle E_{\nu} \rangle = 1 \text{ GeV}$$

• How many interact? In a human body

$$N_{\text{int}} = \Phi_{\nu} \times \sigma^{\nu p} \times N_{\text{prot}}^{\text{human}} \times T_{\text{life}}^{\text{human}}$$

$$N_{\text{protons}}^{\text{human}} = \frac{M^{\text{human}}}{gr} \times N_A = 80 \text{kg} \times N_A \sim 5 \times 10^{28} \text{protons}$$

$$T^{\text{human}} = 80 \text{ years} = 2 \times 10^9 \text{ sec}$$

$$M \times T \equiv \text{Exposure}$$

$$Exposure_{\text{human}}$$

$$\sim \text{Ton} \times \text{year}$$

 $N_{\rm int} = (5 \times 10^{28}) (2 \times 10^9) \times 10^{-38} \sim 1 \, {\rm interaction} \, {\rm in life}$

Problem: Quantitatively: a ν sees a proton of area:

$$\sigma^{\nu p} \sim 10^{-38} \mathrm{cm}^2 \frac{E_{\nu}}{\mathrm{GeV}}$$

• So let's consider the atmospheric ν 's:

$$\Phi_{\nu}^{\text{ATM}} = 1 \nu / (\text{cm}^2 \text{ second}) \text{ y } \langle E_{\nu} \rangle = 1 \text{ GeV}$$

• How many interact? In a human body

$$N_{\text{int}} = \Phi_{\nu} \times \sigma^{\nu p} \times N_{\text{prot}}^{\text{human}} \times T_{\text{life}}^{\text{human}}$$

$$N_{\text{protons}}^{\text{human}} = \frac{M^{\text{human}}}{gr} \times N_A = 80 \text{kg} \times N_A \sim 5 \times 10^{28} \text{protons}$$

$$T^{\text{human}} = 80 \text{ years} = 2 \times 10^9 \text{ sec}$$

$$M \times T \equiv \text{Exposure}$$

$$Exposure_{\text{human}}$$

$$\sim \text{Ton} \times \text{year}$$

 $N_{\rm int} = (5 \times 10^{28}) (2 \times 10^9) \times 10^{-38} \sim 1$ interaction in life

To detect neutrinos we need very intense source and/or a hugh detector with Exposure \sim KTon \times year

First Neutrino Detection

In 1953 Frederick Reines and Clyde Cowan put a detector near a nuclear reactor (the most intense source available)

 e^+ annihilates with e^- in the water and produces two γ 's simultaneouoly. neutron is captured by por the cadmium and a γ 's is emitted 15 msec latter

Reines y Clyde saw clearly this signature: the first neutrino had been detected

Concha Gonzalez-Garcia

Neutrinos = "Left-handed"

Helicity of Neutrinos*

M. GOLDHABER, L. GRODZINS, AND A. W. SUNYAR Brookhaven National Laboratory, Upton, New York (Received December 11, 1957)

A COMBINED analysis of circular polarization and resonant scattering of γ rays following orbital electron capture measures the helicity of the neutrino. We have carried out such a measurement with Eu^{152m}, which decays by orbital electron capture. If we assume the most plausible spin-parity assignment for this isomer compatible with its decay scheme,¹ 0–, we find that the neutrino is "left-handed," i.e., $\sigma_{\nu} \cdot \hat{p}_{\nu} = -1$ (negative helicity).

• We define the chiral projections $P_{R,L} = \frac{1 \pm \gamma_5}{2} \Rightarrow \psi_L = \frac{1 - \gamma_5}{2} \psi \qquad \psi_R = \frac{1 + \gamma_5}{2} \psi$

- We define the chiral projections $P_{R,L} = \frac{1 \pm \gamma_5}{2} \Rightarrow \psi_L = \frac{1 \gamma_5}{2} \psi \qquad \psi_R = \frac{1 + \gamma_5}{2} \psi$
- The Lagrangian of a massive free fermion ψ is $\mathcal{L} = \overline{\psi}(x)(i\gamma \cdot \partial m)\psi(x)$
- 4 independent states with (E, \vec{p}) $(\gamma \cdot p m)u_s(\vec{p}) = 0$ $(\gamma \cdot p + m)v_s(\vec{p}) = 0$ s = 1, 2

- We define the chiral projections $P_{R,L} = \frac{1 \pm \gamma_5}{2} \Rightarrow \psi_L = \frac{1 \gamma_5}{2} \psi \qquad \psi_R = \frac{1 + \gamma_5}{2} \psi$
- The Lagrangian of a massive free fermion ψ is $\mathcal{L} = \overline{\psi}(x)(i\gamma \cdot \partial m)\psi(x)$
- 4 independent states with (E, \vec{p}) $(\gamma \cdot p m)u_s(\vec{p}) = 0$ $(\gamma \cdot p + m)v_s(\vec{p}) = 0$ s = 1, 2
- Since $[H, \gamma_5] \neq 0$ and $[\vec{p}, \vec{J}] \neq 0$ $[\vec{J} = \vec{L} + \frac{\vec{\Sigma}}{2} \quad (\Sigma^i = -\gamma^0 \gamma^5 \gamma^i)]$

 \Rightarrow Neither Chirality nor J_i can simultaneously with E, \vec{p} characterize the fermion

- We define the chiral projections $P_{R,L} = \frac{1 \pm \gamma_5}{2} \Rightarrow \psi_L = \frac{1 \gamma_5}{2} \psi \qquad \psi_R = \frac{1 + \gamma_5}{2} \psi$
- The Lagrangian of a massive free fermion ψ is $\mathcal{L} = \overline{\psi}(x)(i\gamma \cdot \partial m)\psi(x)$
- 4 independent states with (E, \vec{p}) $(\gamma \cdot p m)u_s(\vec{p}) = 0$ $(\gamma \cdot p + m)v_s(\vec{p}) = 0$ s = 1, 2
- Since $[H, \gamma_5] \neq 0$ and $[\vec{p}, \vec{J}] \neq 0$ $[\vec{J} = \vec{L} + \frac{\vec{\Sigma}}{2} \quad (\Sigma^i = -\gamma^0 \gamma^5 \gamma^i)]$ \Rightarrow Neither Chirality nor J_i can simultaneously with E, \vec{p} characterize the fermion
- But $[H, \vec{J}.\vec{p}] = [\vec{p}, \vec{J}.\vec{p}] = 0 \Rightarrow$ we can chose $u_1(\vec{p}) \equiv u_+(\vec{p})$ and $u_2(\vec{p}) \equiv u_-(\vec{p})$ (same for $v_{1,2}$) to be eigenstates of the helicity projector

$$P_{\pm} = \frac{1}{2} \left(1 \pm 2\vec{J}\frac{\vec{p}}{|p|} \right) = \frac{1}{2} \left(1 \pm \vec{\Sigma}\frac{\vec{p}}{|p|} \right)$$

- We define the chiral projections $P_{R,L} = \frac{1 \pm \gamma_5}{2} \Rightarrow \psi_L = \frac{1 \gamma_5}{2} \psi \qquad \psi_R = \frac{1 + \gamma_5}{2} \psi$
- The Lagrangian of a massive free fermion ψ is $\mathcal{L} = \overline{\psi}(x)(i\gamma \cdot \partial m)\psi(x)$
- 4 independent states with (E, \vec{p}) $(\gamma \cdot p m)u_s(\vec{p}) = 0$ $(\gamma \cdot p + m)v_s(\vec{p}) = 0$ s = 1, 2
- Since $[H, \gamma_5] \neq 0$ and $[\vec{p}, \vec{J}] \neq 0$ $[\vec{J} = \vec{L} + \frac{\vec{\Sigma}}{2} \quad (\Sigma^i = -\gamma^0 \gamma^5 \gamma^i)]$ \Rightarrow Neither Chirality nor J_i can simultaneously with E, \vec{p} characterize the fermion
- But $[H, \vec{J}.\vec{p}] = [\vec{p}, \vec{J}.\vec{p}] = 0 \Rightarrow$ we can chose $u_1(\vec{p}) \equiv u_+(\vec{p})$ and $u_2(\vec{p}) \equiv u_-(\vec{p})$ (same for $v_{1,2}$) to be eigenstates of the helicity projector

$$P_{\pm} = \frac{1}{2} \left(1 \pm 2\vec{J} \frac{\vec{p}}{|p|} \right) = \frac{1}{2} \left(1 \pm \vec{\Sigma} \frac{\vec{p}}{|p|} \right)$$

• For massless fermions the Dirac equation can be written

$$\vec{\Sigma}\,\vec{p}\,\psi = -\gamma^0\gamma^5\vec{\gamma}\,\vec{p}\,\psi = -\gamma^0\gamma^5\gamma^0 E\,\psi = \gamma^5 E\psi \Rightarrow \text{ For } m = 0 P_{\pm} = P_{R,L}$$

Only for massless fermions Helicity and chirality states are the same.

- We define the chiral projections $P_{R,L} = \frac{1 \pm \gamma_5}{2} \Rightarrow \psi_L = \frac{1 \gamma_5}{2} \psi \qquad \psi_R = \frac{1 + \gamma_5}{2} \psi$
- The Lagrangian of a massive free fermion ψ is $\mathcal{L} = \overline{\psi}(x)(i\gamma \cdot \partial m)\psi(x)$
- 4 independent states with (E, \vec{p}) $(\gamma \cdot p m)u_s(\vec{p}) = 0$ $(\gamma \cdot p + m)v_s(\vec{p}) = 0$ s = 1, 2
- Since $[H, \gamma_5] \neq 0$ and $[\vec{p}, \vec{J}] \neq 0$ $[\vec{J} = \vec{L} + \frac{\vec{\Sigma}}{2} \quad (\Sigma^i = -\gamma^0 \gamma^5 \gamma^i)]$ \Rightarrow Neither Chirality nor J_i can simultaneously with E, \vec{p} characterize the fermion
- But $[H, \vec{J}.\vec{p}] = [\vec{p}, \vec{J}.\vec{p}] = 0 \Rightarrow$ we can chose $u_1(\vec{p}) \equiv u_+(\vec{p})$ and $u_2(\vec{p}) \equiv u_-(\vec{p})$ (same for $v_{1,2}$) to be eigenstates of the helicity projector

$$P_{\pm} = \frac{1}{2} \left(1 \pm 2\vec{J} \frac{\vec{p}}{|p|} \right) = \frac{1}{2} \left(1 \pm \vec{\Sigma} \frac{\vec{p}}{|p|} \right) = P_{L,R} + \mathcal{O}(\frac{m}{p})$$

• For massless fermions the Dirac equation can be written

$$\vec{\Sigma}\,\vec{p}\,\psi = -\gamma^0\gamma^5\vec{\gamma}\,\vec{p}\,\psi = -\gamma^0\gamma^5\gamma^0 E\,\psi = \gamma^5 E\psi \Rightarrow \text{ For } m = 0 P_{\pm} = P_{R,L}$$

Only for massless fermions Helicity and chirality states are the same.

ν in the SM

• The SM is a gauge theory based on the symmetry group

$SU(3)_C \times SU(2)_L \times U(1)_Y \Rightarrow SU(3)_C \times U(1)_{EM}$

• 3 Generations of Fermions:

$(1, 2, -\frac{1}{2})$	$(3, 2, \frac{1}{6})$	(1, 1, -1)	$(3, 1, \frac{2}{3})$	$(3, 1, -\frac{1}{3})$
L_L	Q_L^i	E_R	U_R^i	D_R^i
$\left(\begin{array}{c} \nu_e \\ e \end{array}\right)_L$	$\left(egin{array}{c} u^i \ d^i \ d^i \ \end{array} ight)_L$	e_R	u_R^i	d_R^i
$\left(\begin{array}{c} \nu_{\mu} \\ \mu \end{array}\right)_{L}$	$\begin{pmatrix} c^i \\ s^i \\ \cdot \end{pmatrix}_L$	μ_R	c_R^i	s_R^i
$\left(\begin{array}{c} \nu_{\tau} \\ \tau \end{array}\right)_{L}^{2}$	$\left(\begin{array}{c}t^i\\b^i\end{array}\right)_L^2$	$ au_R$	t_R^i	b_R^i

• Spin-0 particle ϕ : $(1, 2, \frac{1}{2})$

$$\phi = \left(\begin{array}{c} \phi^+ \\ \phi^0 \end{array}\right) \xrightarrow{SSB} \frac{1}{\sqrt{2}} \left(\begin{array}{c} 0 \\ v+h \end{array}\right)$$

ν in the SM

• The SM is a gauge theory based on the symmetry group

$SU(3)_C \times SU(2)_L \times U(1)_Y \Rightarrow SU(3)_C \times U(1)_{EM}$

• 3 Generations of Fermions:

$(1, 2, -\frac{1}{2})$	$(3, 2, \frac{1}{6})$	(1, 1, -1)	$(3, 1, \frac{2}{3})$	$(3, 1, -\frac{1}{3})$
L_L	Q_L^i	E_R	U_R^i	D_R^i
$\left(\begin{array}{c} \boldsymbol{\nu_e} \\ e \end{array}\right)_L \left(\begin{array}{c} u^i \\ d^i \\ a^i \end{array}\right)$	$\left(\begin{array}{c} u^i \\ d^i \\ a^i \end{array}\right)_L$	e_R	u_R^i .	d_R^i .
$\begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix}_{L}$	$\begin{pmatrix} c \\ s^i \\ \cdot \end{pmatrix}_L$	μ_R	c_R^i	s_R^i
$\left(\begin{array}{c} \nu_{\tau} \\ \tau \end{array}\right)_{L}^{L}$	$\left(\begin{array}{c}t^i\\b^i\end{array}\right)_L^L$	$ au_R$	t_R^i	b_R^i

• Spin-0 particle ϕ : $(1, 2, \frac{1}{2})$

$$\phi = \left(\begin{array}{c} \phi^+ \\ \phi^0 \end{array}\right) \xrightarrow{SSB} \frac{1}{\sqrt{2}} \left(\begin{array}{c} 0 \\ v+h \end{array}\right)$$

$$Q_{EM} = T_{L3} + Y$$

•
$$\nu$$
's are $T_{L3} = \frac{1}{2}$ components of L_L

• ν 's have no strong or EM interactions

• No
$$\nu_R$$
 (\equiv singlets of gauge group)

Number of Neutrinos

• The counting of light left-handed neutrinos is based on the family structure of the SM assuming a universal diagonal NC coupling:

Number of Neutrinos

• The counting of light left-handed neutrinos is based on the family structure of the SM assuming a universal diagonal NC coupling:

 $\sum_{\mathbf{v}}^{\mathbf{V}} j_{\mathbf{Z}}^{\mu} = \sum_{\alpha} \bar{\nu}_{\alpha L} \gamma^{\mu} \nu_{\alpha L}$

• For $m_{\nu_i} < m_Z/2$ one can use the total Z-width Γ_Z to extract N_{ν}

$$\frac{N_{\nu}}{\Gamma_{\nu}} = \frac{\Gamma_{\text{inv}}}{\Gamma_{\nu}} \equiv \frac{1}{\Gamma_{\nu}} (\Gamma_Z - \Gamma_h - 3\Gamma_\ell) \\
= \frac{\Gamma_\ell}{\Gamma_{\nu}} \left[\sqrt{\frac{12\pi R_{h\ell}}{\sigma_h^0 m_Z^2}} - R_{h\ell} - 3 \right]$$

 Γ_{inv} = the invisible width Γ_h = the total hadronic width Γ_l = width to charged lepton

SM Fermion Lagrangian

$$\mathcal{L} = \sum_{k=1}^{3} \sum_{i,j=1}^{3} \overline{Q_{L,k}^{i}} \gamma^{\mu} \left(i\partial_{\mu} - g_{s} \frac{\lambda_{a,ij}}{2} G_{\mu}^{a} - g \frac{\tau_{a}}{2} \delta_{ij} W_{\mu}^{a} - g' \frac{1}{6} \delta_{ij} B_{\mu} \right) Q_{L,k}^{j}$$

$$\sum_{k=1}^{3} \sum_{i,j=1}^{3} + \overline{U_{R,k}^{i}} \gamma^{\mu} \left(i\partial_{\mu} - g_{s} \frac{\lambda_{a,ij}}{2} G_{\mu}^{a} - g' \frac{2}{3} \delta_{ij} B_{\mu} \right) U_{R,k}^{j}$$

$$\sum_{k=1}^{3} \sum_{i,j=1}^{3} + \overline{D_{R,k}^{i}} \gamma^{\mu} \left(i\partial_{\mu} - g_{s} \frac{\lambda_{a,ij}}{2} G_{\mu}^{a} + g' \frac{1}{3} \delta_{ij} B_{\mu} \right) D_{R,k}^{j}$$

$$\sum_{k=1}^{3} + \overline{L_{L,k}} \gamma^{\mu} \left(i\partial_{\mu} - g \frac{\tau_{i}}{2} W_{\mu}^{i} + g' \frac{1}{2} B_{\mu} \right) L_{L,k} + \overline{E_{R,k}} \gamma^{\mu} \left(i\partial_{\mu} + g' B_{\mu} \right) E_{R,k}$$

$$- \sum_{k,k'=1}^{3} \left(\lambda_{kk'}^{u} \overline{Q}_{L,k} (i\tau_{2}) \phi^{*} U_{R,k'} + \lambda_{kk'}^{d} \overline{Q}_{L,k} \phi D_{R,k'} + \lambda_{kk'}^{l} \overline{L}_{L,k} \phi E_{R,k'} + h.c. \right)$$

SM Fermion Lagrangian

Concha Gonzalez-Garcia

$$\mathcal{L} = \sum_{k=1}^{3} \sum_{i,j=1}^{3} \overline{Q_{L,k}^{i}} \gamma^{\mu} \left(i\partial_{\mu} - g_{s} \frac{\lambda_{a,ij}}{2} G_{\mu}^{a} - g \frac{\tau_{a}}{2} \delta_{ij} W_{\mu}^{a} - g' \frac{1}{6} \delta_{ij} B_{\mu} \right) Q_{L,k}^{j}$$

$$\sum_{k=1}^{3} \sum_{i,j=1}^{3} + \overline{U_{R,k}^{i}} \gamma^{\mu} \left(i\partial_{\mu} - g_{s} \frac{\lambda_{a,ij}}{2} G_{\mu}^{a} - g' \frac{2}{3} \delta_{ij} B_{\mu} \right) U_{R,k}^{j}$$

$$\sum_{k=1}^{3} \sum_{i,j=1}^{3} + \overline{D_{R,k}^{i}} \gamma^{\mu} \left(i\partial_{\mu} - g_{s} \frac{\lambda_{a,ij}}{2} G_{\mu}^{a} + g' \frac{1}{3} \delta_{ij} B_{\mu} \right) D_{R,k}^{j}$$

$$\sum_{k=1}^{3} + \overline{L_{L,k}} \gamma^{\mu} \left(i\partial_{\mu} - g \frac{\tau_{i}}{2} W_{\mu}^{i} + g' \frac{1}{2} B_{\mu} \right) L_{L,k} + \overline{E_{R,k}} \gamma^{\mu} \left(i\partial_{\mu} + g' B_{\mu} \right) E_{R,k}$$

$$- \sum_{k,k'=1}^{3} \left(\lambda_{kk'}^{u} \overline{Q}_{L,k} (i\tau_{2}) \phi^{*} U_{R,k'} + \lambda_{kk'}^{d} \overline{Q}_{L,k} \phi D_{R,k'} + \lambda_{kk'}^{l} \overline{L}_{L,k} \phi E_{R,k'} + h.c. \right)$$

• Invariant under global rotations

 $Q_{L,k} \to e^{i\alpha_B/3}Q_{L,k} \qquad U_{R,k} \to e^{i\alpha_B/3}U_{R,k} \qquad D_{R,k} \to e^{i\alpha_B/3}D_{R,k} \qquad L_{L,i} \to e^{i\alpha_{L_k}/3}L_{L,k} \qquad E_{R,k} \to e^{i\alpha_{L_k}/3}E_{R,k}$

SM Fermion Lagrangian

Concha Gonzalez-Garcia

$$\mathcal{L} = \sum_{k=1}^{3} \sum_{i,j=1}^{3} \overline{Q_{L,k}^{i}} \gamma^{\mu} \left(i\partial_{\mu} - g_{s} \frac{\lambda_{a,ij}}{2} G_{\mu}^{a} - g \frac{\tau_{a}}{2} \delta_{ij} W_{\mu}^{a} - g' \frac{1}{6} \delta_{ij} B_{\mu} \right) Q_{L,k}^{j}$$

$$\sum_{k=1}^{3} \sum_{i,j=1}^{3} + \overline{U_{R,k}^{i}} \gamma^{\mu} \left(i\partial_{\mu} - g_{s} \frac{\lambda_{a,ij}}{2} G_{\mu}^{a} - g' \frac{2}{3} \delta_{ij} B_{\mu} \right) U_{R,k}^{j}$$

$$\sum_{k=1}^{3} \sum_{i,j=1}^{3} + \overline{D_{R,k}^{i}} \gamma^{\mu} \left(i\partial_{\mu} - g_{s} \frac{\lambda_{a,ij}}{2} G_{\mu}^{a} + g' \frac{1}{3} \delta_{ij} B_{\mu} \right) D_{R,k}^{j}$$

$$\sum_{k=1}^{3} + \overline{L_{L,k}} \gamma^{\mu} \left(i\partial_{\mu} - g \frac{\tau_{i}}{2} W_{\mu}^{i} + g' \frac{1}{2} B_{\mu} \right) L_{L,k} + \overline{E_{R,k}} \gamma^{\mu} \left(i\partial_{\mu} + g' B_{\mu} \right) E_{R,k}$$

$$- \sum_{k,k'=1}^{3} \left(\lambda_{kk'}^{u} \overline{Q}_{L,k} (i\tau_{2}) \phi^{*} U_{R,k'} + \lambda_{kk'}^{d} \overline{Q}_{L,k} \phi D_{R,k'} + \lambda_{kk'}^{l} \overline{L}_{L,k} \phi E_{R,k'} + h.c. \right)$$

• Invariant under global rotations

 $Q_{L,k} \to e^{i\alpha_B/3}Q_{L,k} \qquad U_{R,k} \to e^{i\alpha_B/3}U_{R,k} \qquad D_{R,k} \to e^{i\alpha_B/3}D_{R,k} \qquad L_{L,i} \to e^{i\alpha_{L_k}/3}L_{L,k} \qquad E_{R,k} \to e^{i\alpha_{L_k}/3}E_{R,k}$

- \Rightarrow Accidental (\equiv not imposed) global symmetry: $B \times L_e \times L_\mu \times L_\tau$
- \Rightarrow Each lepton flavour, L_i , is conserved
- \Rightarrow Total lepton number $L = L_e + L_\mu + L_\tau$ is conserved

oncha Gonzalez-Garcia

• A fermion mass can be seen as at a Left-Right transition

$$m_f \overline{\psi} \psi = m_f \overline{\psi_L} \psi_R + h.c.$$

(this is not $SU(2)_L$ gauge invariant)

oncha Gonzalez-Garcia

• A fermion mass can be seen as at a Left-Right transition

 $m_f \overline{\psi} \psi = m_f \overline{\psi}_L \psi_R + h.c.$ (this is not $SU(2)_L$ gauge invariant)

• In the Standard Model mass comes from *spontaneous symmetry breaking* via Yukawa interaction of the left-handed doublet L_L with the right-handed singlet E_R :

$$\mathcal{L}_{Y}^{l} = -\lambda_{ij}^{l} \overline{L}_{Li} E_{Rj} \phi + \text{h.c.} \quad \phi = \text{the scalar doublet}$$

oncha Gonzalez-Garcia

• A fermion mass can be seen as at a Left-Right transition

 $m_f \overline{\psi} \psi = m_f \overline{\psi}_L \psi_R + h.c.$ (this is not $SU(2)_L$ gauge invariant)

• In the Standard Model mass comes from *spontaneous symmetry breaking* via Yukawa interaction of the left-handed doublet L_L with the right-handed singlet E_R :

$$\mathcal{L}_{Y}^{l} = -\frac{\lambda_{ij}^{l}\overline{L}_{Li}E_{Rj}\phi}{+ \text{h.c.}} \quad \phi = \text{the scalar doublet}$$

• After spontaneous symmetry breaking

$$\phi \xrightarrow{SSB} \left\{ \begin{array}{c} 0\\ \frac{v+H}{\sqrt{2}} \end{array} \right\} \Rightarrow \mathcal{L}_{\text{mass}}^{l} = -\bar{E}_{L} M^{\ell} E_{R} + \text{h.c. with } M^{\ell} = \frac{1}{\sqrt{2}} \lambda^{l} v$$

oncha Gonzalez-Garcia

• A fermion mass can be seen as at a Left-Right transition

 $m_f \overline{\psi} \psi = m_f \overline{\psi}_L \psi_R + h.c.$ (this is not $SU(2)_L$ gauge invariant)

• In the Standard Model mass comes from *spontaneous symmetry breaking* via Yukawa interaction of the left-handed doublet L_L with the right-handed singlet E_R :

$$\mathcal{L}_{Y}^{l} = -\frac{\lambda_{ij}^{l}\overline{L}_{Li}E_{Rj}\phi}{+ \text{h.c.}} \quad \phi = \text{the scalar doublet}$$

• After spontaneous symmetry breaking

$$\phi \xrightarrow{SSB} \left\{ \begin{array}{c} 0\\ \frac{v+H}{\sqrt{2}} \end{array} \right\} \Rightarrow \mathcal{L}_{\text{mass}}^{l} = -\bar{E}_{L} M^{\ell} E_{R} + \text{h.c. with } M^{\ell} = \frac{1}{\sqrt{2}} \lambda^{l} v$$

In the SM:

- There are no right-handed neutrinos
 - \Rightarrow No renormalizable (ie dim \leq 4) gauge-invariant operator for tree level ν mass
- SM gauge invariance \Rightarrow accidental symmetry $U(1)_{\rm B} \times U(1)_{L_e} \times U(1)_{L_{\mu}} \times U(1)_{L_{\tau}}$
 - \Rightarrow Not possible to generate such term at any order perturbatively

oncha Gonzalez-Garcia

• A fermion mass can be seen as at a Left-Right transition

 $m_f \overline{\psi} \psi = m_f \overline{\psi}_L \psi_R + h.c.$ (this is not $SU(2)_L$ gauge invariant)

• In the Standard Model mass comes from *spontaneous symmetry breaking* via Yukawa interaction of the left-handed doublet L_L with the right-handed singlet E_R :

$$\mathcal{L}_{Y}^{l} = -\frac{\lambda_{ij}^{l}\overline{L}_{Li}E_{Rj}\phi}{+ \text{h.c.}} \quad \phi = \text{the scalar doublet}$$

• After spontaneous symmetry breaking

$$\phi \stackrel{SSB}{\to} \left\{ \begin{array}{c} 0\\ \frac{v+H}{\sqrt{2}} \end{array} \right\} \Rightarrow \mathcal{L}_{\text{mass}}^{l} = -\bar{E}_{L} M^{\ell} E_{R} + \text{h.c. with } M^{\ell} = \frac{1}{\sqrt{2}} \lambda^{l} v$$

In the SM:

- There are no right-handed neutrinos
 - \Rightarrow No renormalizable (ie dim \leq 4) gauge-invariant operator for tree level ν mass
- SM gauge invariance \Rightarrow accidental symmetry $U(1)_{B} \times U(1)_{L_{e}} \times U(1)_{L_{\mu}} \times U(1)_{L_{\tau}}$ \Rightarrow Not possible to generate such term at any order perturbatively In SM ν 's are *Strictly* Massless & Lepton Flavours are *Strictly* Conserved

- We have observed with high (or good) precision:
 - * Atmospheric ν_{μ} & $\bar{\nu}_{\mu}$ disappear most likely to ν_{τ} (SK,MINOS, ICECUBE)
 - * Accel. ν_{μ} & $\bar{\nu}_{\mu}$ disappear at $L \sim 300/800$ Km (K2K, **T2K, MINOS, NO** ν **A**)
 - * Some accelerator ν_{μ} appear as ν_{e} at $L \sim 300/800$ Km (**T2K**, MINOS, NO ν A)
 - * Solar ν_e convert to ν_{μ}/ν_{τ} (Cl, Ga, SK, SNO, Borexino)
 - * Reactor $\overline{\nu_e}$ disappear at $L \sim 200$ Km (KamLAND)
 - * Reactor $\overline{\nu_e}$ disappear at $L \sim 1$ Km (D-Chooz, **Daya Bay, Reno**)

- We have observed with high (or good) precision:
 - * Atmospheric ν_{μ} & $\bar{\nu}_{\mu}$ disappear most likely to ν_{τ} (SK,MINOS, ICECUBE)
 - * Accel. ν_{μ} & $\bar{\nu}_{\mu}$ disappear at $L \sim 300/800$ Km (K2K, **T2K, MINOS, NO** ν **A**)
 - * Some accelerator ν_{μ} appear as ν_{e} at $L \sim 300/800$ Km (**T2K**, MINOS, NO ν A)
 - * Solar ν_e convert to ν_{μ}/ν_{τ} (Cl, Ga, SK, SNO, Borexino)
 - * Reactor $\overline{\nu_e}$ disappear at $L \sim 200$ Km (KamLAND)
 - * Reactor $\overline{\nu_e}$ disappear at $L \sim 1$ Km (D-Chooz, **Daya Bay, Reno**)

All this implies that L_{α} are violated and There is Physics Beyond SM
- In the SM neutral bosons can be of two type:
 - Their own antiparticle such as γ , π^0 ...
 - Different from their antiparticle such as K^0, \overline{K}^0 ...
- In the SM ν are the only *neutral fermions*

- In the SM neutral bosons can be of two type:
 - Their own antiparticle such as γ , π^0 ...
 - Different from their antiparticle such as K^0, \overline{K}^0 ...
- In the SM ν are the only *neutral fermions*
- \Rightarrow OPEN QUESTION: are neutrino and antineutrino the same or different particles?

- In the SM neutral bosons can be of two type:
 - Their own antiparticle such as γ , π^0 ...
 - Different from their antiparticle such as K^0, \overline{K}^0 ...
- In the SM ν are the only *neutral fermions*
- \Rightarrow OPEN QUESTION: are neutrino and antineutrino the same or different particles?

* <u>ANSWER 1</u>: ν different from anti- ν

 $\Rightarrow \nu$ is a *Dirac* fermion (like *e*)

- In the SM neutral bosons can be of two type:
 - Their own antiparticle such as γ , π^0 ...
 - Different from their antiparticle such as K^0, \overline{K}^0 ...
- In the SM ν are the only *neutral fermions*
- \Rightarrow OPEN QUESTION: are neutrino and antineutrino the same or different particles?
- * <u>ANSWER 1</u>: ν different from anti- ν $\Rightarrow \nu$ is a *Dirac* fermion (like *e*) \Rightarrow It is described by a *Dirac* field $\nu(x) = \sum_{\vec{p}} \left[a_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + b_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$

- In the SM neutral bosons can be of two type:
 - Their own antiparticle such as γ , π^0 ...
 - Different from their antiparticle such as K^0, \overline{K}^0 ...
- In the SM ν are the only *neutral fermions*
- ⇒ OPEN QUESTION: are neutrino and antineutrino the same or different particles?
- * <u>ANSWER 1:</u> ν different from anti- ν $\Rightarrow \nu$ is a *Dirac* fermion (like *e*) \Rightarrow It is described by a *Dirac* field $\nu(x) = \sum_{s,\vec{p}} \left[a_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + b_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$
- \Rightarrow And the charged conjugate neutrino field \equiv the antineutrino field

$$\nu^{C} = \mathcal{C} \,\nu \,\mathcal{C}^{-1} = \sum_{s,\vec{p}} \left[b_{s}(\vec{p}) u_{s}(\vec{p}) e^{-ipx} + a_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{ipx} \right] = -C \,\overline{\nu}^{T}$$
$$(C = i\gamma^{2}\gamma^{0})$$

which contain two sets of creation-annihilation operators

- In the SM neutral bosons can be of two type:
 - Their own antiparticle such as γ , π^0 ...
 - Different from their antiparticle such as K^0, \overline{K}^0 ...
- In the SM ν are the only *neutral fermions*
- ⇒ OPEN QUESTION: are neutrino and antineutrino the same or different particles?
 - * <u>ANSWER 1:</u> ν different from anti- ν $\Rightarrow \nu$ is a *Dirac* fermion (like *e*) \Rightarrow It is described by a *Dirac* field $\nu(x) = \sum_{s,\vec{p}} \left[a_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + b_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$
 - \Rightarrow And the charged conjugate neutrino field \equiv the antineutrino field

$$\nu^{C} = \mathcal{C} \,\nu \,\mathcal{C}^{-1} = \sum_{s,\vec{p}} \left[b_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + a_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right] = -C \,\overline{\nu}^T$$
$$(C = i\gamma^2 \gamma^0)$$

which contain two sets of creation-annihilation operators

 \Rightarrow These two fields can rewritten in terms of 4 chiral fields

 ν_L , ν_R , $(\nu_L)^C$, $(\nu_R)^C$ with $\nu = \nu_L + \nu_R$ and $\nu^C = (\nu_L)^C + (\nu_R)^C$

* <u>ANSWER 2</u>: ν same as anti- $\nu \Rightarrow \nu$ is a *Majorana* fermion : $\nu_M = \nu_M^C$

* <u>ANSWER 2</u>: ν same as anti- ν $\Rightarrow \nu$ is a *Majorana* fermion : $\nu_M = \nu_M^C$

$$\Rightarrow \nu^{C} = \sum_{s,\vec{p}} \left[b_{s}(\vec{p}) u_{s}(\vec{p}) e^{-ipx} + a_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{ipx} \right] = \nu = \sum_{s,\vec{p}} \left[a_{s}(\vec{p}) u_{s}(\vec{p}) e^{-ipx} + b_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{ipx} \right]$$

* <u>ANSWER 2</u>: ν same as anti- ν $\Rightarrow \nu$ is a *Majorana* fermion : $\nu_M = \nu_M^C$

$$\Rightarrow \nu^{C} = \sum_{s,\vec{p}} \left[b_{s}(\vec{p}) u_{s}(\vec{p}) e^{-ipx} + a_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{ipx} \right] = \nu = \sum_{s,\vec{p}} \left[a_{s}(\vec{p}) u_{s}(\vec{p}) e^{-ipx} + b_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{ipx} \right]$$

 $\Rightarrow \text{So we can rewrite the field } \nu_M = \sum_{s,\vec{p}} \left[a_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + a_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$ which contains only one set of creation–annihilation operators

* <u>ANSWER 2</u>: ν same as anti- ν $\Rightarrow \nu$ is a *Majorana* fermion : $\nu_M = \nu_M^C$

$$\Rightarrow \nu^{C} = \sum_{s,\vec{p}} \left[b_{s}(\vec{p}) u_{s}(\vec{p}) e^{-ipx} + a_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{ipx} \right] = \nu = \sum_{s,\vec{p}} \left[a_{s}(\vec{p}) u_{s}(\vec{p}) e^{-ipx} + b_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{ipx} \right]$$

 $\Rightarrow \text{So we can rewrite the field } \nu_M = \sum_{s,\vec{p}} \left[a_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + a_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$ which contains only one set of creation–annihilation operators

 $\Rightarrow \text{A Majorana particle can be described with only 2 independent chiral fields:}$ $<math>\nu_L \text{ and } (\nu_L)^C \text{ and the other two are } \nu_R = (\nu_L)^C (\nu_R)^C = \nu_L$

* <u>ANSWER 2</u>: ν same as anti- $\nu \Rightarrow \nu$ is a *Majorana* fermion : $\nu_M = \nu_M^C$

$$\Rightarrow \nu^{C} = \sum_{s,\vec{p}} \left[b_{s}(\vec{p}) u_{s}(\vec{p}) e^{-ipx} + a_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{ipx} \right] = \nu = \sum_{s,\vec{p}} \left[a_{s}(\vec{p}) u_{s}(\vec{p}) e^{-ipx} + b_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{ipx} \right]$$

 $\Rightarrow \text{ So we can rewrite the field } \nu_M = \sum_{s,\vec{p}} \left[a_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + a_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$ which contains only one set of creation–annihilation operators

 \Rightarrow A Majorana particle can be described with only 2 independent chiral fields: ν_L and $(\nu_L)^C$ and the other two are $\nu_R = (\nu_L)^C$ $(\nu_R)^C = \nu_L$

• In the SM the interaction term for neutrinos

$$\mathcal{L}_{int} = \frac{i g}{\sqrt{2}} \left[(\bar{l}_{\alpha} \gamma_{\mu} P_L \nu_{\alpha}) W_{\mu}^{-} + (\bar{\nu}_{\alpha} \gamma_{\mu} P_L l_{\alpha}) W_{\mu}^{+} \right] + \frac{i g}{\sqrt{2} \cos \theta_W} (\bar{\nu}_{\alpha} \gamma_{\mu} P_L \nu_{\alpha}) Z_{\mu}$$

Only involves two chiral fields $P_L \nu = \nu_L$ and $\overline{\nu} P_R = (\nu_L)^{C^T} C^{\dagger}$

* <u>ANSWER 2</u>: ν same as anti- $\nu \Rightarrow \nu$ is a *Majorana* fermion : $\nu_M = \nu_M^C$

$$\Rightarrow \nu^{C} = \sum_{s,\vec{p}} \left[b_{s}(\vec{p}) u_{s}(\vec{p}) e^{-ipx} + a_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{ipx} \right] = \nu = \sum_{s,\vec{p}} \left[a_{s}(\vec{p}) u_{s}(\vec{p}) e^{-ipx} + b_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{ipx} \right]$$

 $\Rightarrow \text{ So we can rewrite the field } \nu_M = \sum_{s,\vec{p}} \left[a_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + a_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$ which contains only one set of creation–annihilation operators

 \Rightarrow A Majorana particle can be described with only 2 independent chiral fields: ν_L and $(\nu_L)^C$ and the other two are $\nu_R = (\nu_L)^C (\nu_R)^C = \nu_L$

• In the SM the interaction term for neutrinos

$$\mathcal{L}_{int} = \frac{i\,g}{\sqrt{2}} \left[(\bar{l}_{\alpha}\gamma_{\mu}P_{L}\nu_{\alpha})W_{\mu}^{-} + (\bar{\nu}_{\alpha}\gamma_{\mu}P_{L}l_{\alpha})W_{\mu}^{+} \right] + \frac{i\,g}{\sqrt{2}\cos\theta_{W}} (\bar{\nu}_{\alpha}\gamma_{\mu}P_{L}\nu_{\alpha})Z_{\mu}$$

Only involves two chiral fields $P_L \nu = \nu_L$ and $\overline{\nu} P_R = (\nu_L)^{C^T} C^{\dagger}$

 \Rightarrow Weak interaction cannot distinguish if neutrinos are Dirac or Majorana

* <u>ANSWER 2</u>: ν same as anti- $\nu \Rightarrow \nu$ is a *Majorana* fermion : $\nu_M = \nu_M^C$

$$\Rightarrow \nu^{C} = \sum_{s,\vec{p}} \left[b_{s}(\vec{p}) u_{s}(\vec{p}) e^{-ipx} + a_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{ipx} \right] = \nu = \sum_{s,\vec{p}} \left[a_{s}(\vec{p}) u_{s}(\vec{p}) e^{-ipx} + b_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{ipx} \right]$$

 $\Rightarrow \text{ So we can rewrite the field } \nu_M = \sum_{s,\vec{p}} \left[a_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + a_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$ which contains only one set of creation–annihilation operators

 $\Rightarrow \text{A Majorana particle can be described with only 2 independent chiral fields:} \\ \nu_L \text{ and } (\nu_L)^C \quad \text{and the other two are} \quad \nu_R = (\nu_L)^C \quad (\nu_R)^C = \nu_L$

• In the SM the interaction term for neutrinos

$$\mathcal{L}_{int} = \frac{ig}{\sqrt{2}} \left[(\bar{l}_{\alpha} \gamma_{\mu} P_L \nu_{\alpha}) W_{\mu}^{-} + (\bar{\nu}_{\alpha} \gamma_{\mu} P_L l_{\alpha}) W_{\mu}^{+} \right] + \frac{ig}{\sqrt{2}\cos\theta_W} (\bar{\nu}_{\alpha} \gamma_{\mu} P_L \nu_{\alpha}) Z_{\mu}$$

Only involves two chiral fields $P_L \nu = \nu_L$ and $\overline{\nu} P_R = (\nu_L)^{C^T} C^{\dagger}$

 \Rightarrow Weak interaction cannot distinguish if neutrinos are Dirac or Majorana

The difference arises when including *a neutrino mass*

Adding ν Mass: Dirac Mass

• A fermion mass is a Left-Right operator : $\mathcal{L}_{m_f} = -m_f \overline{\psi_L} \psi_R + h.c.$

- A fermion mass is a Left-Right operator : $\mathcal{L}_{m_f} = -m_f \overline{\psi_L} \psi_R + h.c.$
- One introduces ν_R which can couple to the lepton doublet by Yukawa interaction

$$\mathcal{L}_{Y}^{(\nu)} = -\frac{\lambda_{ij}^{\nu}}{\overline{\nu_{Ri}}} L_{Lj} \widetilde{\phi}^{\dagger} + \text{h.c.} \qquad (\widetilde{\phi} = i\tau_2 \phi^*)$$

- A fermion mass is a Left-Right operator : $\mathcal{L}_{m_f} = -m_f \overline{\psi_L} \psi_R + h.c.$
- One introduces ν_R which can couple to the lepton doublet by Yukawa interaction

$$\mathcal{L}_{Y}^{(\nu)} = -\frac{\lambda_{ij}^{\nu}}{\overline{\nu_{Ri}}} L_{Lj} \widetilde{\phi}^{\dagger} + \text{h.c.} \qquad (\widetilde{\phi} = i\tau_2 \phi^*)$$

• Under spontaneous symmetry-breaking $\mathcal{L}_Y^{(\nu)} \Rightarrow \mathcal{L}_{mass}^{(Dirac)}$

$$\mathcal{L}_{\text{mass}}^{(\text{Dirac})} = -\overline{\nu_R} M_D^{\nu} \nu_L + \text{h.c.} \equiv -\frac{1}{2} (\overline{\nu_R} M_D^{\nu} \nu_L + \overline{(\nu_L)^c} M_D^{\nu}{}^T (\nu_R)^c) + \text{h.c.} \equiv -\sum_k m_k \overline{\nu_k} \nu_k^D \nu_k^D$$

 $M_D^{\nu} = \frac{1}{\sqrt{2}} \lambda^{\nu} v$ =Dirac mass for neutrinos $V_R^{\nu \dagger} M_D V^{\nu} = \text{diag}(m_1, m_2, m_3)$

- A fermion mass is a Left-Right operator : $\mathcal{L}_{m_f} = -m_f \overline{\psi_L} \psi_R + h.c.$
- One introduces ν_R which can couple to the lepton doublet by Yukawa interaction

$$\mathcal{L}_{Y}^{(\nu)} = -\frac{\lambda_{ij}^{\nu}}{\overline{\nu_{Ri}}} L_{Lj} \widetilde{\phi}^{\dagger} + \text{h.c.} \qquad (\widetilde{\phi} = i\tau_2 \phi^*)$$

• Under spontaneous symmetry-breaking $\mathcal{L}_Y^{(\nu)} \Rightarrow \mathcal{L}_{mass}^{(Dirac)}$

$$\mathcal{L}_{\text{mass}}^{(\text{Dirac})} = -\overline{\nu_R} M_D^{\nu} \nu_L + \text{h.c.} \equiv -\frac{1}{2} (\overline{\nu_R} M_D^{\nu} \nu_L + \overline{(\nu_L)^c} M_D^{\nu}{}^T (\nu_R)^c) + \text{h.c.} \equiv -\sum_k m_k \overline{\nu_k} \nu_k^D \nu_k^D$$

 $M_D^{\nu} = \frac{1}{\sqrt{2}} \lambda^{\nu} v$ =Dirac mass for neutrinos $V_R^{\nu \dagger} M_D V^{\nu} = \text{diag}(m_1, m_2, m_3)$

 $\Rightarrow \text{The eigenstates of } M_D^{\nu} \text{ are Dirac fermions (same as quarks and charged leptons)}$ $\nu^D = V^{\nu \dagger} \nu_L + V_R^{\nu \dagger} \nu_R$

- A fermion mass is a Left-Right operator : $\mathcal{L}_{m_f} = -m_f \overline{\psi_L} \psi_R + h.c.$
- One introduces ν_R which can couple to the lepton doublet by Yukawa interaction

$$\mathcal{L}_{Y}^{(\nu)} = -\frac{\lambda_{ij}^{\nu}}{\overline{\nu_{Ri}}} L_{Lj} \widetilde{\phi}^{\dagger} + \text{h.c.} \qquad (\widetilde{\phi} = i\tau_2 \phi^*)$$

• Under spontaneous symmetry-breaking $\mathcal{L}_Y^{(\nu)} \Rightarrow \mathcal{L}_{\text{mass}}^{(\text{Dirac})}$

$$\mathcal{L}_{\text{mass}}^{(\text{Dirac})} = -\overline{\nu_R} M_D^{\nu} \nu_L + \text{h.c.} \equiv -\frac{1}{2} (\overline{\nu_R} M_D^{\nu} \nu_L + \overline{(\nu_L)^c} M_D^{\nu}{}^T (\nu_R)^c) + \text{h.c.} \equiv -\sum_k m_k \overline{\nu}_k^D \nu_k^D$$

 $M_D^{\nu} = \frac{1}{\sqrt{2}} \lambda^{\nu} v$ =Dirac mass for neutrinos $V_R^{\nu \dagger} M_D V^{\nu} = \text{diag}(m_1, m_2, m_3)$

 $\Rightarrow \text{The eigenstates of } M_D^{\nu} \text{ are Dirac fermions (same as quarks and charged leptons)}$ $\nu^D = V^{\nu \dagger} \nu_L + V_R^{\nu \dagger} \nu_R$

• $\mathcal{L}_{\mathrm{mass}}^{(\mathrm{Dirac})}$ involves the four chiral fields ν_L , ν_R , $(\nu_L)^C$, $(\nu_R)^C$

- A fermion mass is a Left-Right operator : $\mathcal{L}_{m_f} = -m_f \overline{\psi_L} \psi_R + h.c.$
- One introduces ν_R which can couple to the lepton doublet by Yukawa interaction

$$\mathcal{L}_{Y}^{(\nu)} = -\frac{\lambda_{ij}^{\nu}}{\overline{\nu_{Ri}}} L_{Lj} \widetilde{\phi}^{\dagger} + \text{h.c.} \qquad (\widetilde{\phi} = i\tau_{2}\phi^{*})$$

• Under spontaneous symmetry-breaking $\mathcal{L}_Y^{(\nu)} \Rightarrow \mathcal{L}_{\text{mass}}^{(\text{Dirac})}$

$$\mathcal{L}_{\text{mass}}^{(\text{Dirac})} = -\overline{\nu_R} M_D^{\nu} \nu_L + \text{h.c.} \equiv -\frac{1}{2} (\overline{\nu_R} M_D^{\nu} \nu_L + \overline{(\nu_L)^c} M_D^{\nu}{}^T (\nu_R)^c) + \text{h.c.} \equiv -\sum_k m_k \overline{\nu}_k^D \nu_k^D$$

 $M_D^{\nu} = \frac{1}{\sqrt{2}} \lambda^{\nu} v$ =Dirac mass for neutrinos $V_R^{\nu \dagger} M_D V^{\nu} = \text{diag}(m_1, m_2, m_3)$

 $\Rightarrow \text{The eigenstates of } M_D^{\nu} \text{ are Dirac fermions (same as quarks and charged leptons)}$ $\nu^D = V^{\nu \dagger} \nu_L + V_R^{\nu \dagger} \nu_R$

• $\mathcal{L}_{\text{mass}}^{(\text{Dirac})}$ involves the four chiral fields ν_L , ν_R , $(\nu_L)^C$, $(\nu_R)^C$

 \Rightarrow Total Lepton number is conserved by construction (not accidentally):

$$\begin{array}{ccc} U(1)_L : & \nu \to e^{i\alpha} \nu & \text{and} & \overline{\nu} \to e^{-i\alpha} \overline{\nu} \\ U(1)_L : & \nu^C \to e^{-i\alpha} \nu^C & \text{and} & \overline{\nu^C} \to e^{i\alpha} \overline{\nu^C} \end{array} \end{array} \right\} \Rightarrow \mathcal{L}_{\text{mass}}^{(\text{Dirac})} \to \mathcal{L}_{\text{mass}}^{(\text{Dirac})}$$

oncha Gonzalez-Garcia

• One does not introduce ν_R but uses that the field $(\nu_L)^c$ is right-handed, so that one can write a Lorentz-invariant mass term

$$\mathcal{L}_{\text{mass}}^{(\text{Maj})} = -\frac{1}{2} \overline{\nu_L^c} M_M^{\nu} \nu_L + \text{h.c.} \equiv -\frac{1}{2} \sum_k m_k \overline{\nu}_i^M \nu_i^M$$

oncha Gonzalez-Garcia

• One does not introduce ν_R but uses that the field $(\nu_L)^c$ is right-handed, so that one can write a Lorentz-invariant mass term

$$\mathcal{L}_{\text{mass}}^{(\text{Maj})} = -\frac{1}{2} \overline{\nu_L^c} M_M^{\nu} \nu_L + \text{h.c.} \equiv -\frac{1}{2} \sum_k m_k \overline{\nu}_i^M \nu_i^M$$

 M_M^{ν} =Majorana mass for ν 's is symmetric

$$V^{\nu T} M_M V^{\nu} = \text{diag}(m_1, m_2, m_3)$$

 \Rightarrow The eigenstates of M_M^{ν} are Majorana particles

$$\nu^{M} = V^{\nu \dagger} \nu_{L} + (V^{\nu \dagger} \nu_{L})^{c} \text{ (verify } \nu^{M}{}_{i}^{c} = \nu^{M}_{i} \text{)}$$

oncha Gonzalez-Garcia

• One does not introduce ν_R but uses that the field $(\nu_L)^c$ is right-handed, so that one can write a Lorentz-invariant mass term

$$\mathcal{L}_{\text{mass}}^{(\text{Maj})} = -\frac{1}{2} \overline{\nu_L^c} M_M^{\nu} \nu_L + \text{h.c.} \equiv -\frac{1}{2} \sum_k m_k \overline{\nu}_i^M \nu_i^M$$

 M_M^{ν} =Majorana mass for ν 's is symmetric

$$V^{\nu T} M_M V^{\nu} = \text{diag}(m_1, m_2, m_3)$$

 \Rightarrow The eigenstates of M_M^{ν} are Majorana particles

$$\nu^{M} = V^{\nu \dagger} \nu_{L} + (V^{\nu \dagger} \nu_{L})^{c} \text{ (verify } \nu^{M}{}_{i}^{c} = \nu^{M}_{i} \text{)}$$

 \Rightarrow But $SU(2)_L$ gauge inv is broken $\Rightarrow \mathcal{L}_{mass}^{(Maj)}$ not possible at tree-level in the SM

oncha Gonzalez-Garcia

• One does not introduce ν_R but uses that the field $(\nu_L)^c$ is right-handed, so that one can write a Lorentz-invariant mass term

$$\mathcal{L}_{\text{mass}}^{(\text{Maj})} = -\frac{1}{2} \overline{\nu_L^c} M_M^{\nu} \nu_L + \text{h.c.} \equiv -\frac{1}{2} \sum_k m_k \overline{\nu}_i^M \nu_i^M$$

 M_M^{ν} =Majorana mass for ν 's is symmetric $V^{\nu T} M_M V^{\nu} = \text{diag}(m_1, m_2, m_3)$

 \Rightarrow The eigenstates of M_M^{ν} are Majorana particles $\nu^{M} = V^{\nu \dagger} \nu_{L} + (V^{\nu \dagger} \nu_{L})^{c} \text{ (verify } \nu^{M}{}_{i}^{c} = \nu_{i}^{M} \text{)}$

 \Rightarrow But $SU(2)_L$ gauge inv is broken $\Rightarrow \mathcal{L}_{mass}^{(Maj)}$ not possible at tree-level in the SM

• Moreover under any U(1) symmetry with U(1) : $\nu \to e^{i\alpha} \nu$

 $\Rightarrow \nu^c \to e^{-i\alpha} \nu^c$ and $\overline{\nu} \to e^{-i\alpha} \overline{\nu}$ so $\overline{\nu^c} \to e^{i\alpha} \overline{\nu^c} \Rightarrow \mathcal{L}_{\text{mass}}^{(\text{Maj})} \to e^{2i\alpha} \mathcal{L}_{\text{mass}}^{(\text{Maj})}$

 $\mathcal{L}_{\text{mass}}^{(\text{Maj})}$ breaks $U(1) \Rightarrow$ only possible for particles without electric charge

oncha Gonzalez-Garcia

• One does not introduce ν_R but uses that the field $(\nu_L)^c$ is right-handed, so that one can write a Lorentz-invariant mass term

$$\mathcal{L}_{\text{mass}}^{(\text{Maj})} = -\frac{1}{2} \overline{\nu_L^c} M_M^{\nu} \nu_L + \text{h.c.} \equiv -\frac{1}{2} \sum_k m_k \overline{\nu}_i^M \nu_i^M$$

 M_M^{ν} =Majorana mass for ν 's is symmetric $V^{\nu T} M_M V^{\nu} = \text{diag}(m_1, m_2, m_3)$

 $\Rightarrow \text{The eigenstates of } M_M^{\nu} \text{ are Majorana particles}$ $\nu^M = V^{\nu\dagger} \nu_L + (V^{\nu\dagger} \nu_L)^c \text{ (verify } \nu_i^M \nu_i^c = \nu_i^M \text{)}$

 \Rightarrow But $SU(2)_L$ gauge inv is broken $\Rightarrow \mathcal{L}_{mass}^{(Maj)}$ not possible at tree-level in the SM

• Moreover under any U(1) symmetry with U(1) : $\nu \to e^{i\alpha} \nu$

 $\Rightarrow \nu^c \to e^{-i\alpha} \nu^c \quad \text{and} \quad \overline{\nu} \to e^{-i\alpha} \overline{\nu} \quad \text{so} \quad \overline{\nu^c} \to e^{i\alpha} \overline{\nu^c} \quad \Rightarrow \quad \mathcal{L}_{\text{mass}}^{(\text{Maj})} \to e^{2i\alpha} \quad \mathcal{L}_{\text{mass}}^{(\text{Maj})}$

 $\mathcal{L}_{\text{mass}}^{(\text{Maj})}$ breaks $U(1) \Rightarrow$ only possible for particles without electric charge \Rightarrow Breaks Total Lepton Number $\Rightarrow \mathcal{L}_{\text{mass}}^{(\text{Maj})}$ not generated at any loop level in the SM

oncha Gonzalez-Garcia

• One does not introduce ν_R but uses that the field $(\nu_L)^c$ is right-handed, so that one can write a Lorentz-invariant mass term

$$\mathcal{L}_{\text{mass}}^{(\text{Maj})} = -\frac{1}{2} \overline{\nu_L^c} M_M^{\nu} \nu_L + \text{h.c.} \equiv -\frac{1}{2} \sum_k m_k \overline{\nu}_i^M \nu_i^M$$

 M_M^{ν} =Majorana mass for ν 's is symmetric $V^{\nu T} M_M V^{\nu} = \text{diag}(m_1, m_2, m_3)$

 $\Rightarrow \text{The eigenstates of } M_M^{\nu} \text{ are Majorana particles}$ $\nu^M = V^{\nu\dagger} \nu_L + (V^{\nu\dagger} \nu_L)^c \text{ (verify } \nu_i^M \nu_i^C = \nu_i^M \text{)}$

 \Rightarrow But $SU(2)_L$ gauge inv is broken $\Rightarrow \mathcal{L}_{mass}^{(Maj)}$ not possible at tree-level in the SM

• Moreover under any U(1) symmetry with U(1) : $\nu \to e^{i\alpha} \nu$

 $\Rightarrow \nu^c \to e^{-i\alpha} \nu^c \quad \text{and} \quad \overline{\nu} \to e^{-i\alpha} \overline{\nu} \quad \text{so} \quad \overline{\nu^c} \to e^{i\alpha} \overline{\nu^c} \quad \Rightarrow \quad \mathcal{L}_{\text{mass}}^{(\text{Maj})} \to e^{2i\alpha} \quad \mathcal{L}_{\text{mass}}^{(\text{Maj})}$

 $\mathcal{L}_{\text{mass}}^{(\text{Maj})}$ breaks $U(1) \Rightarrow$ only possible for particles without electric charge \Rightarrow Breaks Total Lepton Number $\Rightarrow \mathcal{L}_{\text{mass}}^{(\text{Maj})}$ not generated at any loop level in the SM • in SM B - L is non anomalous $\Rightarrow \mathcal{L}_{\text{mass}}^{(\text{Maj})}$ not generated non-perturbatively in SM

• CC and mass for 3 charged leptons ℓ_i and N neutrinos in weak basis $\nu^W \equiv \begin{pmatrix} \nu_{L,e} \\ \nu_{L,\mu} \\ \nu_{L,\tau} \\ (\nu_{R,1})^C \end{pmatrix}$

$$\mathcal{L}_{CC} + \mathcal{L}_{M} = -\frac{g}{\sqrt{2}} \sum_{i=1}^{3} \overline{\ell_{L,i}^{W}} \gamma^{\mu} \nu_{i}^{W} W_{\mu}^{+} - \sum_{i,j=1}^{3} \overline{\ell_{L,i}^{W}} M_{\ell i j} \ell_{R,j}^{W} - \frac{1}{2} \sum_{i,j=1}^{N} \overline{\nu_{i}^{cW}} M_{\nu i j} \nu_{j}^{W} + \text{h.c.}$$

• CC and mass for 3 charged leptons ℓ_i and N neutrinos in weak basis $\nu^W \equiv \begin{pmatrix} \nu_{L,e} \\ \nu_{L,\mu} \\ \nu_{L,\tau} \\ (\nu_{R,1})^C \end{pmatrix}$

$$\mathcal{L}_{CC} + \mathcal{L}_{M} = -\frac{g}{\sqrt{2}} \sum_{i=1}^{3} \overline{\ell_{L,i}^{W}} \gamma^{\mu} \nu_{i}^{W} W_{\mu}^{+} - \sum_{i,j=1}^{3} \overline{\ell_{L,i}^{W}} M_{\ell i j} \ell_{R,j}^{W} - \frac{1}{2} \sum_{i,j=1}^{N} \overline{\nu_{i}^{cW}} M_{\nu i j} \nu_{j}^{W} + \text{h.c}$$

• Change to mass basis : $\ell_{L,i}^W = V_{Lij}^\ell \ell_{L,j}$ $\ell_{R,i}^W = V_{Rij}^\ell \ell_{R,j}$ $\nu_i^W = V_{ij}^\nu \nu_j$

 $V_L^{\ell^{\dagger}} M_{\ell} V_R^{\ell} = \text{diag}(m_e, m_{\mu}, m_{\tau})$ $V_{L,R}^{\ell} \equiv \text{Unitary } 3 \times 3 \text{ matrices}$

 $V^{\nu T} M_{\nu} V^{\nu} = \text{diag}(m_1^2, m_2^2, m_3^2, \dots, m_N^2)$

 $V^{\nu} \equiv$ Unitary $N \times N$ matrix.

• CC and mass for 3 charged leptons ℓ_i and N neutrinos in weak basis $\nu^W \equiv \begin{pmatrix} \nu_{L,e} \\ \nu_{L,\mu} \\ \nu_{L,\tau} \\ (\nu_{R,1})^C \end{pmatrix}$

$$\mathcal{L}_{CC} + \mathcal{L}_{M} = -\frac{g}{\sqrt{2}} \sum_{i=1}^{3} \overline{\ell_{L,i}^{W}} \gamma^{\mu} \nu_{i}^{W} W_{\mu}^{+} - \sum_{i,j=1}^{3} \overline{\ell_{L,i}^{W}} M_{\ell i j} \ell_{R,j}^{W} - \frac{1}{2} \sum_{i,j=1}^{N} \overline{\nu_{i}^{cW}} M_{\nu i j} \nu_{j}^{W} + \text{h.c.}$$

• Change to mass basis : $\ell_{L,i}^W = V_{Lij}^\ell \ell_{L,j}$ $\ell_{R,i}^W = V_{Rij}^\ell \ell_{R,j}$ $\nu_i^W = V_{ij}^\nu \nu_j$

$$V_L^{\ell^{\dagger}} M_{\ell} V_R^{\ell} = \text{diag}(m_e, m_{\mu}, m_{\tau})$$

$$V_{L,R}^{\nu^{\dagger}} = \text{Unitary } 3 \times 3 \text{ matrices}$$

$$V^{\nu} \equiv \text{Unitary } N \times N \text{ matrix.}$$

• The charged current in the mass basis: $\mathcal{L}_{CC} = -\frac{g}{\sqrt{2}} \overline{\ell_L^i} \gamma^{\mu} U_{\text{LEP}}^{ij} \nu_j W_{\mu}^+$

• CC and mass for 3 charged leptons ℓ_i and N neutrinos in weak basis $\nu^W \equiv \begin{pmatrix} \nu_{L,e} \\ \nu_{L,\mu} \\ \nu_{L,\tau} \\ (\nu_{R,1})^C \end{pmatrix}$

$$\mathcal{L}_{CC} + \mathcal{L}_{M} = -\frac{g}{\sqrt{2}} \sum_{i=1}^{3} \overline{\ell_{L,i}^{W}} \gamma^{\mu} \nu_{i}^{W} W_{\mu}^{+} - \sum_{i,j=1}^{3} \overline{\ell_{L,i}^{W}} M_{\ell i j} \ell_{R,j}^{W} - \frac{1}{2} \sum_{i,j=1}^{N} \overline{\nu_{i}^{cW}} M_{\nu i j} \nu_{j}^{W} + \text{h.c.}$$

• Change to mass basis : $\ell_{L,i}^W = V_{Lij}^\ell \ell_{L,j}$ $\ell_{R,i}^W = V_{Rij}^\ell \ell_{R,j}$ $\nu_i^W = V_{ij}^\nu \nu_j$

$$V_L^{\ell^{\dagger}} M_{\ell} V_R^{\ell} = \text{diag}(m_e, m_{\mu}, m_{\tau})$$

$$V^{\nu T} M_{\nu} V^{\nu} = \text{diag}(m_1^2, m_2^2, m_3^2, \dots, m_N^2)$$

$$V_{L,R}^{\ell} \equiv \text{Unitary } 3 \times 3 \text{ matrices}$$

$$V^{\nu} \equiv \text{Unitary } N \times N \text{ matrix.}$$

- The charged current in the mass basis: $\mathcal{L}_{CC} = -\frac{g}{\sqrt{2}} \overline{\ell_L^i} \gamma^{\mu} U_{\text{LEP}}^{ij} \nu_j W_{\mu}^+$
- $U_{\text{LEP}} \equiv 3 \times N$ matrix $U_{\text{LEP}} U_{\text{LEP}}^{\dagger} = I_{3 \times 3}$ but in general $U_{\text{LEP}}^{\dagger} U_{\text{LEP}} \neq I_{N \times N}$

$$U_{\rm LEP}^{ij} = \sum_{k=1}^{3} P_{ii}^{\ell} V_L^{\ell^{\dagger ik}} V^{\nu kj} P_{jj}^{\nu}$$

Lepton Mixing

$U_{\text{LEP}} \equiv 3 \times N$ matrix

$$U_{\rm LEP}^{ij} = \sum_{k=1}^{3} P_{ii}^{\ell} V_{L}^{\ell^{\dagger ik}} V^{\nu k j} P_{jj}^{\nu}$$

Concha Gonzalez-Garcia

Lepton Mixing

 $U_{
m LEP} \equiv 3 imes N$ matrix

$$U_{\rm LEP}^{ij} = \sum_{k=1}^{3} P_{ii}^{\ell} V_{L}^{\ell^{\dagger}ik} V^{\nu kj} P_{jj}^{\nu}$$

- $P_{ii}^{\ell} \supset 3$ phases absorbed in l_i
- $P_{kk}^{\nu} \supset$ N-1 phases absorbed in ν_i (only possible if ν_i is Dirac)
- $U_{\text{LEP}}U_{\text{LEP}}^{\dagger} = I_{3\times 3}$ but in general $U_{\text{LEP}}^{\dagger}U_{\text{LEP}} \neq I_{N\times N}$

Lepton Mixing

 $U_{\text{LEP}} \equiv 3 \times N$ matrix

$$V_{\rm LEP}^{ij} = \sum_{k=1}^{3} P_{ii}^{\ell} V_{L}^{\ell^{\dagger ik}} V^{\nu kj} P_{jj}^{\nu}$$

- $P_{ii}^{\ell} \supset 3$ phases absorbed in l_i
- $P_{kk}^{\nu} \supset$ N-1 phases absorbed in ν_i (only possible if ν_i is Dirac)
- $U_{\text{LEP}}U_{\text{LEP}}^{\dagger} = I_{3\times 3}$ but in general $U_{\text{LEP}}^{\dagger}U_{\text{LEP}} \neq I_{N\times N}$

 \Rightarrow For N = 3 + s: $U_{\text{LEP}} \supset 3(1 + s)$ angles + 2s + 1 Dirac phases + s + 2 Maj phases

Lepton Mixing

 $U_{\text{LEP}} \equiv 3 \times N$ matrix

$$U_{\text{LEP}}^{ij} = \sum_{k=1}^{3} P_{ii}^{\ell} V_{L}^{\ell^{\dagger}ik} V^{\nu k j} P_{jj}^{\nu}$$

- $P_{ii}^{\ell} \supset 3$ phases absorbed in l_i
- $P_{kk}^{\nu} \supset$ N-1 phases absorbed in ν_i (only possible if ν_i is Dirac)
- $U_{\text{LEP}}U_{\text{LEP}}^{\dagger} = I_{3\times 3}$ but in general $U_{\text{LEP}}^{\dagger}U_{\text{LEP}} \neq I_{N\times N}$

 \Rightarrow For N = 3 + s: $U_{\text{LEP}} \supset 3(1 + s)$ angles + 2s + 1 Dirac phases + s + 2 Maj phases

• For example for 3 Dirac ν 's : 3 Mixing angles + 1 Dirac Phase

$$U_{\text{LEP}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{21} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Lepton Mixing

 $U_{\text{LEP}} \equiv 3 \times N$ matrix

$$U_{\rm LEP}^{ij} = \sum_{k=1}^{3} P_{ii}^{\ell} V_{L}^{\ell^{\dagger ik}} V^{\nu k j} P_{jj}^{\nu}$$

- $P_{ii}^{\ell} \supset 3$ phases absorbed in l_i
- $P_{kk}^{\nu} \supset$ N-1 phases absorbed in ν_i (only possible if ν_i is Dirac)
- $U_{\text{LEP}}U_{\text{LEP}}^{\dagger} = I_{3\times 3}$ but in general $U_{\text{LEP}}^{\dagger}U_{\text{LEP}} \neq I_{N\times N}$

 \Rightarrow For N = 3 + s: $U_{\text{LEP}} \supset 3(1 + s)$ angles + 2s + 1 Dirac phases + s + 2 Maj phases

• For example for 3 Dirac ν 's : 3 Mixing angles + 1 Dirac Phase

$$U_{\text{LEP}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{21} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• For 3 Majorana ν 's : 3 Mixing angles + 1 Dirac Phase + 2 Majorana Phases

$$U_{\text{LEP}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{21} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\phi_2} & 0 \\ 0 & 0 & e^{i\phi_3} \end{pmatrix}$$

The New Minimal Standard Model

- Minimal Extension to allow for LFV \Rightarrow give Mass to the Neutrino
 - * Introduce ν_R AND impose L conservation \Rightarrow Dirac $\nu \neq \nu^c$: $\mathcal{L} = \mathcal{L}_{SM} - M_{\nu} \overline{\nu_L} \nu_R + h.c.$
 - * NOT impose L conservation \Rightarrow Majorana $\nu = \nu^c$

 $\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{2}M_{\nu}\overline{\nu_L}\nu_L^C + h.c.$

The New Minimal Standard Model

- Minimal Extension to allow for LFV \Rightarrow give Mass to the Neutrino
 - * Introduce ν_R AND impose L conservation \Rightarrow Dirac $\nu \neq \nu^c$: $\mathcal{L} = \mathcal{L}_{SM} - M_{\nu} \overline{\nu_L} \nu_R + h.c.$
 - * NOT impose L conservation \Rightarrow Majorana $\nu = \nu^c$

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{2}M_{\nu}\overline{\nu_L}\nu_L^C + h.c.$$

• The charged current interactions of leptons are not diagonal (same as quarks)

The New Minimal Standard Model

- Minimal Extension to allow for LFV \Rightarrow give Mass to the Neutrino
 - * Introduce ν_R AND impose L conservation \Rightarrow Dirac $\nu \neq \nu^c$: $\mathcal{L} = \mathcal{L}_{SM} - M_{\nu} \overline{\nu_L} \nu_R + h.c.$
 - * NOT impose L conservation \Rightarrow Majorana $\nu = \nu^c$

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{2}M_{\nu}\overline{\nu_L}\nu_L^C + h.c.$$

• The charged current interactions of leptons are not diagonal (same as quarks)

$$\frac{g}{\sqrt{2}}W^+_{\mu}\sum_{ij}\left(U^{ij}_{\text{LEP}}\,\overline{\ell^i}\,\gamma^{\mu}\,L\,\nu^j + U^{ij}_{\text{CKM}}\,\overline{U^i}\,\gamma^{\mu}\,L\,D^j\right) + h.c.$$

• In general for N = 3 + s massive neutrinos U_{LEP} is $3 \times N$ matrix

 $U_{\text{LEP}}U_{\text{LEP}}^{\dagger} = I_{3\times 3}$ but in general $U_{\text{LEP}}^{\dagger}U_{\text{LEP}} \neq I_{N\times N}$

• U_{LEP} : 3 + 3s angles + 2s + 1 Dirac phases + s + 2 Majorana phases

• Amplitude involves the product of two leptonic currents: $\left[\overline{e}\gamma^{\mu}L\nu\right]\left[\overline{e}\gamma^{\mu}L\nu\right]$

- If ν Dirac $\Rightarrow \nu$ annihilates a neutrino and creates an antineutrino

 \Rightarrow no same state \Rightarrow Amplitude = 0

- If ν Majorana $\Rightarrow \nu = \nu^c$ annihilates and creates a neutrino=antineutrino \Rightarrow same state \Rightarrow Amplitude $\propto \nu (\nu)^T \neq 0$

• Amplitude involves the product of two leptonic currents: $\left[\overline{e}\gamma^{\mu}L\nu\right]\left[\overline{e}\gamma^{\mu}L\nu\right]$

- If ν Dirac $\Rightarrow \nu$ annihilates a neutrino and creates an antineutrino

 \Rightarrow no same state \Rightarrow Amplitude = 0

- If ν Majorana $\Rightarrow \nu = \nu^c$ annihilates and creates a neutrino=antineutrino \Rightarrow same state \Rightarrow Amplitude $\propto \nu (\nu)^T \neq 0$
- If Majorana m_{ν} only source of L-violation

 \Rightarrow Amplitude of ν -less- $\beta\beta$ decay is proportional to $\langle m_{\beta\beta}\rangle = \sum U_{ej}^2 m_j$

Neutrino Mass Scale: Tritium β **Decay**

nzalez-Garcia

• Fermi proposed a kinematic search of ν_e mass from beta spectra in ${}^{3}H$ beta decay

 $^{3}H\rightarrow ^{3}He+e+\overline{\nu }_{e}$

• For "allowed" nuclear transitions, the electron spectrum is given by phase space alone

$$K(T) \equiv \sqrt{\frac{dN}{dT} \frac{1}{Cp \, E \, F(E)}} \propto \sqrt{(Q-T)\sqrt{(Q-T)^2 - m_{\nu_e}^2}}$$

 $T = E_e - m_e$, Q = maximum kinetic energy, (for ³*H* beta decay Q = 18.6 KeV)

Taking into account mixing $m_{\nu_e}^{\text{eff}} \equiv \sqrt{\sum m_{\nu_j}^2 |U_{ej}|^2}$

Neutrino Mass Scale: Tritium β **Decay**

nzalez-Garcia

• Fermi proposed a kinematic search of ν_e mass from beta spectra in ${}^{3}H$ beta decay

 $^{3}H\rightarrow ^{3}He+e+\overline{\nu }_{e}$

• For "allowed" nuclear transitions, the electron spectrum is given by phase space alone

$$K(T) \equiv \sqrt{\frac{dN}{dT} \frac{1}{Cp \, E \, F(E)}} \propto \sqrt{(Q-T)\sqrt{(Q-T)^2 - m_{\nu_e}^2}}$$

 $T = E_e - m_e$, Q = maximum kinetic energy, (for ³*H* beta decay Q = 18.6 KeV)

Taking into account mixing $m_{\nu_e}^{\text{eff}} \equiv \sqrt{\sum m_{\nu_j}^2 |U_{ej}|^2}$

• $m_{\nu} \neq 0 \Rightarrow$ distortion from the straight-line at the end point of the spectrum

Neutrino Mass Scale: Tritium β Decay

nzalez-Garcia

• Fermi proposed a kinematic search of ν_e mass from beta spectra in ${}^{3}H$ beta decay

 $^{3}H\rightarrow ^{3}He+e+\overline{\nu }_{e}$

• For "allowed" nuclear transitions, the electron spectrum is given by phase space alone

$$K(T) \equiv \sqrt{\frac{dN}{dT} \frac{1}{Cp \, E \, F(E)}} \propto \sqrt{(Q-T)\sqrt{(Q-T)^2 - m_{\nu_e}^2}}$$

 $T = E_e - m_e$, Q = maximum kinetic energy, (for ³*H* beta decay Q = 18.6 KeV)

Taking into account mixing $m_{\nu_e}^{\text{eff}} \equiv \sqrt{\sum m_{\nu_j}^2 |U_{ej}|^2}$

• $m_{\nu} \neq 0 \Rightarrow$ distortion from the straight-line at the end point of the spectrum

Effects of ν **Mass: Flavour Transitions**

- Flavour (\equiv Interaction) basis (production and detection): ν_e , ν_μ and ν_τ
- Mass basis (free propagation in space-time): ν_1 , ν_2 and ν_3 ...

Effects of ν **Mass: Flavour Transitions**

- Flavour (\equiv Interaction) basis (production and detection): ν_e , ν_μ and ν_τ
- Mass basis (free propagation in space-time): ν_1 , ν_2 and ν_3 ...
- In general interaction eigenstates \neq propagation eigenstates

Effects of ν **Mass: Flavour Transitions**

- Flavour (\equiv Interaction) basis (production and detection): ν_e , ν_μ and ν_τ
- Mass basis (free propagation in space-time): ν_1 , ν_2 and ν_3 ...
- In general interaction eigenstates \neq propagation eigenstates

• The probability $P_{\alpha\beta}$ of producing neutrino with flavour α and detecting with flavour β has to depend on:

- Misalignment between interaction and propagation states ($\equiv U$)
- Difference between propagation eigenvalues
- Propagation distance

Mass Induced Flavour Oscillations in Vacuum

- If neutrinos have mass, a weak eigenstate $|\nu_{\alpha}\rangle$ produced in $l_{\alpha} + N \rightarrow \nu_{\alpha} + N'$
 - is a linear combination of the mass eigenstates $(|\nu_i\rangle)$

$$|
u_{lpha}
angle = \sum_{i=1}^{n} U_{lpha i}^{*} |
u_{i}
angle$$

U is the leptonic mixing matrix.

Mass Induced Flavour Oscillations in Vacuum

• If neutrinos have mass, a weak eigenstate $|\nu_{\alpha}\rangle$ produced in $l_{\alpha} + N \rightarrow \nu_{\alpha} + N'$ is a linear combination of the mass eigenstates $(|\nu_i\rangle)$

$$\ket{
u_lpha} = \sum_{i=1}^n U^*_{lpha i} \ket{
u_i}$$

U is the leptonic mixing matrix.

• After a distance L (or time t) it evolves

$$|\nu_{\alpha}(t)\rangle = \sum_{i=1}^{n} U_{\alpha i}^{*} |\nu_{i}(t)\rangle$$

Mass Induced Flavour Oscillations in Vacuum

• If neutrinos have mass, a weak eigenstate $|\nu_{\alpha}\rangle$ produced in $l_{\alpha} + N \rightarrow \nu_{\alpha} + N'$ is a linear combination of the mass eigenstates $(|\nu_i\rangle)$

$$|
u_{lpha}
angle = \sum_{i=1}^{n} U^{*}_{lpha i} |
u_{i}
angle$$

U is the leptonic mixing matrix.

• After a distance L (or time t) it evolves

$$|\nu_{\alpha}(t)\rangle = \sum_{i=1}^{n} U_{\alpha i}^{*} |\nu_{i}(t)\rangle$$

• it can be detected with flavour β with probability

$$P_{\alpha\beta} = |\langle \nu_{\beta} | \nu_{\alpha}(t) \rangle|^2 = |\sum_{j=1}^n \sum_{i=1}^n U_{\alpha i}^* U_{\beta j} \langle \nu_j | \nu_i(t) \rangle|^2$$

• The probability

$$P_{\alpha\beta} = |\langle \nu_{\beta} | \nu_{\alpha}(t) \rangle|^2 = |\sum_{j=1}^{n} \sum_{i=1}^{n} U_{\alpha i}^* U_{\beta j} \langle \nu_{j} | \nu_{i}(t) \rangle|^2$$

- We call E_i the neutrino energy and m_i the neutrino mass
- Under the approximations:
 - (1) $|\nu\rangle$ is a plane wave $\Rightarrow |\nu_i(t)\rangle = \mathbf{e}^{-i E_i t} |\nu_i(0)\rangle$ and using $\langle \nu_j |\nu_i\rangle = \delta_{ij}$

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4\sum_{i$$

with
$$\Delta_{ij} = (E_i - E_j)t$$

• The probability

$$P_{\alpha\beta} = |\langle \nu_{\beta} | \nu_{\alpha}(t) \rangle|^2 = |\sum_{j=1}^{n} \sum_{i=1}^{n} U_{\alpha i}^* U_{\beta j} \langle \nu_{j} | \nu_{i}(t) \rangle|^2$$

- We call E_i the neutrino energy and m_i the neutrino mass
- Under the approximations:

(1) $|\nu\rangle$ is a plane wave $\Rightarrow |\nu_i(t)\rangle = \mathbf{c}^{-i E_i t} |\nu_i(0)\rangle$ and using $\langle \nu_j |\nu_i\rangle = \delta_{ij}$

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4\sum_{i$$

with
$$\Delta_{ij} = (E_i - E_j)t$$

(2) relativistic ν

$$E_i = \sqrt{p_i^2 + m_i^2} \simeq p_i + \frac{m_i^2}{2E_i}$$

(3) Lowest order in mass $p_i \simeq p_j = p \simeq E$

$$\frac{\Delta_{ij}}{2} = 1.27 \frac{m_i^2 - m_j^2}{\text{eV}^2} \frac{L/E}{\text{Km/GeV}}$$

• The oscillation probability:

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4\sum_{i
$$\frac{\Delta_{ij}}{2} = \frac{(E_{i}-E_{j})L}{2} = 1.27\frac{(m_{i}^{2}-m_{j}^{2})}{eV^{2}}\frac{L/E}{\mathrm{Km/GeV}}$$$$

• The oscillation probability:

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4 \sum_{i < j}^{n} \operatorname{Re}[U_{\alpha i}U_{\beta i}^{*}U_{\alpha j}^{*}U_{\beta j}]\sin^{2}\left(\frac{\Delta_{ij}}{2}\right) + 2 \sum_{i < j} \operatorname{Im}[U_{\alpha i}U_{\beta i}^{*}U_{\alpha j}^{*}U_{\beta j}]\sin(\Delta_{ij})$$
$$\frac{\Delta_{ij}}{2} = \frac{(E_{i} - E_{j})L}{2} = 1.27 \frac{(m_{i}^{2} - m_{j}^{2})}{\mathrm{eV}^{2}} \frac{L/E}{\mathrm{Km/GeV}}$$
$$- \operatorname{The first term} \delta_{\alpha\beta} - 4 \sum_{i < j}^{n} \operatorname{Re}[U_{\alpha i}U_{\beta i}^{*}U_{\alpha j}^{*}U_{\beta j}]\sin^{2}\left(\frac{\Delta_{ij}}{2}\right) \text{ equal for } \overline{\nu} \quad (U \to U^{*})$$
$$\rightarrow \text{ conserves CP}$$

• The oscillation probability:

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4 \sum_{i < j}^{n} \operatorname{Re}[U_{\alpha i}U_{\beta i}^{*}U_{\alpha j}^{*}U_{\beta j}]\sin^{2}\left(\frac{\Delta_{ij}}{2}\right) + 2 \sum_{i < j} \operatorname{Im}[U_{\alpha i}U_{\beta i}^{*}U_{\alpha j}^{*}U_{\beta j}]\sin(\Delta_{ij})$$

$$\frac{\Delta_{ij}}{2} = \frac{(E_{i} - E_{j})L}{2} = 1.27 \frac{(m_{i}^{2} - m_{j}^{2})}{eV^{2}} \frac{L/E}{\operatorname{Km/GeV}}$$

$$- \operatorname{The first term} \quad \delta_{\alpha\beta} - 4 \sum_{i < j}^{n} \operatorname{Re}[U_{\alpha i}U_{\beta i}^{*}U_{\alpha j}^{*}U_{\beta j}]\sin^{2}\left(\frac{\Delta_{ij}}{2}\right) \quad \text{equal for } \overline{\nu} \quad (U \to U^{*})$$

$$\rightarrow \text{ conserves CP}$$

$$- \operatorname{The last piece} \quad 2 \sum_{i < j} \operatorname{Im}[U_{\alpha i}U_{\beta i}^{*}U_{\alpha j}^{*}U_{\beta j}]\sin(\Delta_{ij}) \quad \text{opposite sign for } \overline{\nu}$$

$$\rightarrow \text{ violates CP}$$

• The oscillation probability:

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4 \sum_{i < j}^{n} \operatorname{Re}[U_{\alpha i}U_{\beta i}^{*}U_{\alpha j}^{*}U_{\beta j}]\sin^{2}\left(\frac{\Delta_{ij}}{2}\right) + 2 \sum_{i < j} \operatorname{Im}[U_{\alpha i}U_{\beta i}^{*}U_{\alpha j}^{*}U_{\beta j}]\sin(\Delta_{ij})$$

$$\frac{\Delta_{ij}}{2} = \frac{(E_{i} - E_{j})L}{2} = 1.27 \frac{(m_{i}^{2} - m_{j}^{2})}{eV^{2}} \frac{L/E}{\operatorname{Km/GeV}}$$

$$- \operatorname{The first term} \quad \delta_{\alpha\beta} - 4 \sum_{i < j}^{n} \operatorname{Re}[U_{\alpha i}U_{\beta i}^{*}U_{\alpha j}^{*}U_{\beta j}]\sin^{2}\left(\frac{\Delta_{ij}}{2}\right) \quad \text{equal for } \overline{\nu} \quad (U \to U^{*})$$

$$\to \text{ conserves CP}$$

$$- \operatorname{The last piece} \quad 2 \sum_{i < j} \operatorname{Im}[U_{\alpha i}U_{\beta i}^{*}U_{\alpha j}^{*}U_{\beta j}]\sin(\Delta_{ij}) \quad \text{opposite sign for } \overline{\nu}$$

$$\to \text{ violates CP}$$

 $-\operatorname{If} \alpha = \beta \Rightarrow \operatorname{Im}[U_{\alpha i}U_{\alpha i}^{*}U_{\alpha j}^{*}U_{\alpha j}] = \operatorname{Im}[|U_{\alpha i}^{\star}|^{2}|U_{\alpha j}|^{2}] = 0$

 \Rightarrow CP violation observable only for $\beta \neq \alpha$

• The oscillation probability:

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4 \sum_{j < i}^{n} \operatorname{Re}[U_{\alpha i}^{\star} U_{\beta i} U_{\alpha j} U_{\beta j}^{\star}] \sin^{2} \left(\frac{\Delta_{ij}}{2}\right) + 2 \sum_{j < i} \operatorname{Im}[U_{\alpha i}^{\star} U_{\beta i} U_{\alpha j} U_{\beta j}^{\star}] \sin(\Delta_{ij})$$

$$\frac{\Delta_{ij}}{2} = \frac{(E_{i} - E_{j})L}{2} = 1.27 \frac{(m_{i}^{2} - m_{j}^{2})}{\mathrm{eV}^{2}} \frac{L/E}{\mathrm{Km/GeV}}$$

$$- \operatorname{The first term} \quad \delta_{\alpha\beta} - 4 \sum_{j < i}^{n} \operatorname{Re}[U_{\alpha i}^{\star} U_{\beta i} U_{\alpha j} U_{\beta j}^{\star}] \sin^{2} \left(\frac{\Delta_{ij}}{2}\right) \quad \text{equal for } \overline{\nu} \quad (U \to U^{*})$$

$$\rightarrow \text{ conserves CP}$$

$$- \operatorname{The last piece} \quad 2 \sum_{j < i} \operatorname{Im}[U_{\alpha i}^{\star} U_{\beta i} U_{\alpha j} U_{\beta j}^{\star}] \sin(\Delta_{ij}) \quad \text{opposite sign for } \overline{\nu}$$

$$\rightarrow \text{ violates CP}$$

- $P_{\alpha\beta}$ depends on Neutrino Parameters
 - $\Delta m_{ij}^2 = m_i^2 m_j^2$ The mass differences • $U_{\alpha j}$ The mixing angles (and Dirac phases)

and on Two set-up Parameters:

- E The neutrino energy
- L Distance ν source to detector

• The oscillation probability:

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4 \sum_{j < i}^{n} \operatorname{Re}[U_{\alpha i}^{\star} U_{\beta i} U_{\alpha j} U_{\beta j}^{\star}] \sin^{2} \left(\frac{\Delta_{ij}}{2}\right) + 2 \sum_{j < i} \operatorname{Im}[U_{\alpha i}^{\star} U_{\beta i} U_{\alpha j} U_{\beta j}^{\star}] \sin(\Delta_{ij})$$

$$\frac{\Delta_{ij}}{2} = \frac{(E_{i} - E_{j})L}{2} = 1.27 \frac{(m_{i}^{2} - m_{j}^{2})}{\mathrm{eV}^{2}} \frac{L/E}{\mathrm{Km/GeV}}$$

$$- \operatorname{The first term} \quad \delta_{\alpha\beta} - 4 \sum_{j < i}^{n} \operatorname{Re}[U_{\alpha i}^{\star} U_{\beta i} U_{\alpha j} U_{\beta j}^{\star}] \sin^{2} \left(\frac{\Delta_{ij}}{2}\right) \quad \text{equal for } \overline{\nu} \quad (U \to U^{*})$$

$$\rightarrow \text{ conserves CP}$$

$$- \operatorname{The last piece} \quad 2 \sum_{j < i} \operatorname{Im}[U_{\alpha i}^{\star} U_{\beta i} U_{\alpha j} U_{\beta j}^{\star}] \sin(\Delta_{ij}) \quad \text{opposite sign for } \overline{\nu}$$

$$\rightarrow \text{ violates CP}$$

• $P_{\alpha\beta}$ depends on Neutrino Parameters • $\Delta m_{ij}^2 = m_i^2 - m_j^2$ The mass differences • $U_{\alpha j}$ The mixing angles (and Dirac phases) and on Two set-up Parameters:

- E The neutrino energy
- L Distance ν source to detector
- No information on mass scale nor Majorana phases

2- ν **Oscillations**

L (distance)

2- ν **Oscillations**

L (distance)

*P*_{osc} is symmetric independently under Δm² → -Δm² or θ → -θ + π/2 ⇒ No information on ordering (≡ signΔm²) nor octant of θ
 U is real ⇒ no CP violation

This only happens for 2ν vacuum oscillations

ν Oscillations: Experimental Probes

• Generically there are two types of experiments to search for ν oscillations :

ν Oscillations: Experimental Probes

• Generically there are two types of experiments to search for ν oscillations :

Disappearance Experiment

Compares $\Phi_{\alpha I}$ and $\Phi_{\alpha II}$ to look for loss

ν Oscillations: Experimental Probes

• Generically there are two types of experiments to search for ν oscillations :

ν Oscillations: Experimental Probes

• Generically there are two types of experiments to search for ν oscillations :

• To detect oscillations we can study the neutrino flavour

ν Oscillations: Experimental Probes

• Generically there are two types of experiments to search for ν oscillations :

• To detect oscillations we can study the neutrino flavour as function of the Distance to the source

L(distancia)

ν Oscillations: Experimental Probes

• Generically there are two types of experiments to search for ν oscillations :

• To detect oscillations we can study the neutrino flavour as function of the Distance to the source As fur

As function of the neutrino Energy

• To detect oscillations we can study the neutrino flavour

as function of the Distance to the source

As function of the neutrino Energy

- To detect oscillations we can study the neutrino flavour
 - as function of the Distance to the source

L(distancia)

As function of the neutrino Energy

• In real experiments $\Rightarrow \langle P_{\alpha\beta} \rangle = \int dE_{\nu} \frac{d\Phi}{dE_{\nu}} \sigma_{CC}(E_{\nu}) P_{\alpha\beta}(E_{\nu})$

E (energy)

• Maximal sensitivity for $\Delta m^2 \sim E/L$

 $-\Delta m^2 \ll E/L \quad \Rightarrow \langle \sin^2 \left(\Delta m^2 L/4E \right) \rangle \simeq 0 \quad \Rightarrow \quad \langle P_{\alpha \neq \beta} \rangle \simeq 0 \& \langle P_{\alpha \alpha} \rangle \simeq 1$ $-\Delta m^2 \gg E/L \quad \Rightarrow \langle \sin^2 \left(\Delta m^2 L/4E \right) \rangle \simeq \frac{1}{2} \quad \Rightarrow \quad \langle P_{\alpha \neq \beta} \rangle \simeq \frac{\sin^2(2\theta)}{2} \leq \frac{1}{2} \& \langle P_{\alpha \alpha} \rangle \geq \frac{1}{2}$

Matter Effects

- If ν cross matter regions (Sun, Earth...) it interacts coherently with the matter fermions
 - But Different flavours
 have different interactions :

 \Rightarrow Effective potential in ν evolution : $V_e \neq V_{\mu,\tau} \Rightarrow \Delta V^{\nu} = -\Delta V^{\bar{\nu}} = \sqrt{2}G_F N_e$

$$-i\frac{\partial}{\partial x}\begin{pmatrix}\nu_{e}\\\nu_{X}\end{pmatrix} = \left[\left[-\begin{pmatrix}V_{e} - V_{X} - \frac{\Delta m^{2}}{4E}\cos 2\theta & \frac{\Delta m^{2}}{4E}\sin 2\theta\\\frac{\Delta m^{2}}{4E}\sin 2\theta & \frac{\Delta m^{2}}{4E}\cos 2\theta \end{pmatrix} \right] \begin{pmatrix}\nu_{e}\\\nu_{X}\end{pmatrix}$$

 \Rightarrow *Modification of mixing angle and oscillation wavelength* (MSW)

Matter Effects

- If ν cross matter regions (Sun, Earth...) it interacts coherently with the matter fermions
 - But Different flavours
 have different interactions :

- $\Rightarrow \text{ Effective potential in } \nu \text{ evolution} : V_e \neq V_{\mu,\tau} \Rightarrow \Delta V^{\nu} = -\Delta V^{\bar{\nu}} = \sqrt{2}G_F N_e$ $-i\frac{\partial}{\partial x} \begin{pmatrix} \nu_e \\ \nu_X \end{pmatrix} = \begin{bmatrix} \left[-\begin{pmatrix} V_e V_X \frac{\Delta m^2}{4E}\cos 2\theta & \frac{\Delta m^2}{4E}\sin 2\theta \\ \frac{\Delta m^2}{4E}\sin 2\theta & \frac{\Delta m^2}{4E}\cos 2\theta \end{pmatrix} \right] \begin{pmatrix} \nu_e \\ \nu_X \end{pmatrix}$
- \Rightarrow *M*odification of mixing angle and oscillation wavelength (MSW)

• Mass difference and mixing in matter:

$$\Delta m_{mat}^2 = \sqrt{\left(\Delta m^2 \cos 2\theta - 2E\Delta V\right)^2 + \left(\Delta m^2 \sin 2\theta\right)^2}$$
$$\sin(2\theta_{mat}) = \frac{\Delta m^2 \sin(2\theta)}{\Delta m_{mat}^2}$$

 \Rightarrow For solar $\nu's$ in adiabatic regime

 $P_{ee} = \frac{1}{2} \left[1 + \cos(2\theta_m) \cos(2\theta) \right]$

Dependence on θ octant

 $\Rightarrow \text{ In LBL terrestrial experiments}$ Dependence on sign of Δm^2 and θ octant

Solar Neutrinos

• Sun shines by nuclear fusion of protons into He

Solar Neutrinos

• Sun shines by nuclear fusion of protons into He

• Two main chains of nuclear reactions

pp Chain :

CNO cycle:

Solar Neutrinos: Fluxes

PP CHAIN	E_{ν} (MeV)
(pp)	
$p + p \rightarrow^2 H + e^+ + \nu_e$	≤ 0.42
(pep)	
$p + e^- + p \rightarrow^2 H + \nu_e$	1.552
(⁷ Be)	
$^7Be + e^- \rightarrow ^7Li + \nu_e$	0.862(90%)
	0.384 (10%)
(hep)	
$^{2}He + p \rightarrow^{4}He + e^{+} + \nu_{e}$	≤ 18.77
(⁸ B)	
${}^8B \rightarrow {}^8Be^* + e^+ + \nu_e$	≤ 15
CNO CHAIN	E_{ν} (MeV)
(^{13}N)	
${}^{13}N \rightarrow {}^{13}C + e^+ + \nu_e$	≤ 1.199
(¹⁵ 0)	
${}^{15}O \rightarrow {}^{15}N + e^+ + \nu_e$	≤ 1.732
(^{17}F)	
${}^{17}F \rightarrow {}^{17}O + e^+ + \nu_e$	≤ 1.74

Solar Neutrinos: Results

Concha Gonzalez-Garcia

Experiments measuring ν_e observe a deficit

Deficit disappears in NC

 \Rightarrow Solar Model Independent Effect

Deficit is energy dependent

Deficit \Rightarrow $P_{ee} \sim 30\%$ (< 0.5) for $E_{\nu} \gtrsim 0.8$ MeV

Solar Neutrinos: Results

Concha Gonzalez-Garcia

Experiments measuring ν_e observe a deficit Deficit disappears in NC

 \Rightarrow Solar Model Independent Effect

Deficit is energy dependent

Deficit \Rightarrow $P_{ee} \sim 30\%$ (< 0.5) for $E_{\nu} \gtrsim 0.8$ MeV

Terrestrial test: KamLAND

KamLAND: Detector of $\bar{\nu}_e$ produced in nuclear reactors in Japan at an average distance of 180 Km

Terrestrial test: KamLAND

KamLAND: Detector of $\bar{\nu}_e$ produced in nuclear reactors in Japan at an average distance of 180 Km

Byproduct: Testing How the Sun Shines with $\nu's$

Fitting together Δm^2 , θ and normalization of ν -producing reactions: $f_i = \frac{\Phi_i}{\Phi_i^{SSM}}$ \Rightarrow Constraint on solar energy produced by nuclear

Atmospheric Neutrinos

Atmospheric $\nu_{e,\mu}$ are produced by the interaction of cosmic rays (p, He ...) with the atmosphere

Detection of Atmpospheric Neutrinos: SuperKamiokande

Located in the Kamiokande mine in the center of Japan at ~ 1 Km deep 50 Kton of water surounded by ~ 12000 photomultipliers

Atmospheric Neutrinos:Results

oncha Gonzalez-Garcia

• SKI+II+III+IV data:

Atmospheric Neutrinos: Results

oncha Gonzalez-Garcia

• SKI+II+III+IV data:

Best explained by
$$\nu_{\mu} \rightarrow \nu_{\tau}$$

 $\tan^2 \theta \sim 1 \Rightarrow \theta \sim \frac{\pi}{4}$

Alternative Oscillation Mechanisms

- Oscillations are due to:
 - Misalignment between CC-int and propagation states: Mixing \Rightarrow Amplitude
 - Difference phases of propagation states \Rightarrow Wavelength. For Δm^2 -OSC $\lambda = \frac{4\pi E}{\Delta m^2}$

Alternative Oscillation Mechanisms

- Oscillations are due to:
 - Misalignment between CC-int and propagation states: Mixing \Rightarrow Amplitude
 - Difference phases of propagation states \Rightarrow Wavelength. For Δm^2 -OSC $\lambda = \frac{4\pi E}{\Delta m^2}$
- ν masses are not the only mechanism for oscillations

Violation of Equivalence Principle (VEP): Gasperini 88, Halprin,Leung 01 Non universal coupling of neutrinos $\gamma_1 \neq \gamma_2$ to gravitational potential ϕ

Violation of Lorentz Invariance (VLI): Coleman, Glashow 97 Non universal asymptotic velocity of neutrinos $c_1 \neq c_2 \Rightarrow E_i = \frac{m_i^2}{2p} + c_i p$

Interactions with space-time torsion: Sabbata, Gasperini 81

Non universal couplings of neutrinos $k_1 \neq k_2$ to torsion strength Q

Violation of Lorentz Invariance (VLI) Colladay, Kostelecky 97; Coleman, Glashow 99 due to CPT violating terms: $\bar{\nu}_L^{\alpha} b_{\mu}^{\alpha\beta} \gamma_{\mu} \nu_L^{\beta} \Rightarrow E_i = \frac{m_i^2}{2p} \pm b_i$ $\lambda = \pm \frac{2\pi}{\Delta b}$

$$\lambda = rac{\pi}{E|\phi|\delta\gamma}$$

$$\lambda = \frac{2\pi}{E\Delta c}$$

$$\lambda = \frac{2\pi}{Q\Delta k}$$

Alternative Mechanisms vs ATM ν 's

• Strongly constrained with ATM data (MCG-G, M. Maltoni PRD 04,07)

$$\begin{aligned} \frac{|\Delta c|}{c} &\leq 1.2 \times 10^{-24} \\ |\phi \, \Delta \gamma| &\leq 5.9 \times 10^{-25} \\ \text{At 90\% CL:} \quad |Q \, \Delta k| &\leq 4.8 \times 10^{-23} \text{ GeV} \\ |\Delta b| &\leq 3.0 \times 10^{-23} \text{ GeV} \end{aligned}$$

ν_{μ} Disappearance in Accelerator ν Fluxes

T2K:

 u_{μ} produced in Tokai (Japan) detected in SK at ~ 250 Km

MINOS, NO νA

 ν_{μ} produced en Fermilab (Illinois) detected in Minnesota at ~ 800 Km

Long Baseline Experiments: ν_{μ} **Disappearance**

 ν_{μ} oscillations with $\Delta m^2 \sim 2.5 \times 10^{-3} \text{ eV}^2$ and mixing compatible with $\frac{\pi}{4}$

Long Baseline Experiments: ν_e Appearance

• Observation of $\nu_{\mu} \rightarrow \nu_{e}$ transitions with $E/L \sim 10^{-3} \text{ eV}^{2}$

• Test of $P(\nu_{\mu} \rightarrow \nu_{e})$ vs $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}) \Rightarrow$ Leptonic CP violation

Medium Baseline Reactor Experiments

nzalez-Garcia

- Searches for $\bar{\nu}_e \to \bar{\nu}_e$ disapperance at $L \sim \text{Km} (E/L \sim 10^{-3} \text{ eV}^2)$
- Relative measurement: near and far detectors

Daya-Bay

Medium Baseline Reactor Experiments

• Searches for $\bar{\nu}_e \rightarrow \bar{\nu}_e$ disapperance at $L \sim \text{Km} \left(E/L \sim 10^{-3} \text{ eV}^2 \right)$

• Relative measurement: near and far detectors

Daya-Bay

Reno

nzalez-Garcia

Medium Baseline Reactor Experiments

• Searches for $\bar{\nu}_e \rightarrow \bar{\nu}_e$ disapperance at $L \sim \text{Km} (E/L \sim 10^{-3} \text{ eV}^2)$

• Relative measurement: near and far detectors

Daya-Bay

Reno

nzalez-Garcia

Described with $\Delta m^2 \sim 2.5 \times 10^{-3} \text{eV}^2$ (as ν_{μ} ATM and LBL acc but for ν_e) and $\theta \sim 9^{\circ}$

• We have observed with high (or good) precision:

* Atmospheric ν_{μ} & $\bar{\nu}_{\mu}$ disappear most likely to ν_{τ} (SK,MINOS, ICECUBE Δm^{2} $\sim 210^{-3}$

- * Accel. ν_{μ} & $\bar{\nu}_{\mu}$ disappear at $L \sim 300/800$ Km (K2K, **T2K**, **MINOS**, **NO** ν **A**) $\theta \sim 45^{\circ}$
- * Some accelerator ν_{μ} appear as ν_{e} at $L \sim 300/800$ Km (T2K, MINOS, NO ν A)
- * Solar ν_e convert to ν_{μ}/ν_{τ} (Cl, Ga, SK, SNO, Borexino)
- * Reactor $\overline{\nu_e}$ disappear at $L \sim 200$ Km (KamLAND)
- * Reactor $\overline{\nu_e}$ disappear at $L \sim 1$ Km (D-Chooz, **Daya Bay, Reno**)

$$\frac{\Delta m^2}{{\rm eV}^2} \sim 10^{-5}, \theta \sim 30^{\circ}$$

$$\frac{\Delta m^2}{\mathrm{eV}^2} \sim 2\,10^{-3}, \theta \sim 8^\circ$$

 $\theta \sim 8^{\circ}$

• Confirmed_{Vacuum} oscillation L/E pattern with 2 frequencies

 3ν Flavour Parameters

Concha Gonzalez-Garcia

• For for 3 ν 's : 3 Mixing angles + 1 Dirac Phase + 2 Majorana Phases

$$U_{\text{LEP}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta_{\text{cp}}} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta_{\text{cp}}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{21} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i} & 0 & 0 \\ 0 & q^{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• Convention: $0 \le \theta_{ij} \le 90^\circ$ $0 \le \delta \le 360^\circ \Rightarrow 2$ Orderings

Global 6-parameter fit http://www.nu-fit.org

Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou, JHEP'20 [2007.14792]

Global 6-parameter fit http://www.nu-fit.org

Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou, JHEP'20 [2007.14792]

Evolution of global 3 flavour fit

Gonzalez-Garcia, Maltoni, TS [arXiv:2111.03086]

	2012	2014	2016	2018	2021	
	NuFIT 1.0	NuFIT 2.0	NuFIT 3.0	NuFIT 4.0	NuFIT 5.1	
θ_{12}	15%	14%	14%	14%	14%	1.07
θ_{13}	30%	15%	11%	8.9%	9.0%	3.3
θ_{23}	43%	32%	32%	27%	27%	1.6
Δm_{21}^2	14%	14%	14%	16%	16%	0.88
$\left \Delta m_{3\ell}^2\right $	17%	11%	9%	7.8%	6.7% [6.5%]	2.5
$\delta_{ m CP}$	100%	100%	100%	100% [92%]	100% [83%]	1 [1.2]
$\Delta \chi^2_{ m IO-NO}$	± 0.5	-0.97	+0.83	+4.7 [+9.3]	+2.6 [+7.0]	1
			w/o [w] SK atm data			

relat. precision at $3\sigma: \ {2(x^+-x^-)\over (x^++x^-)}$

improvement factor from 2012 to 2021

• Last decade: after including $\theta_{13} \simeq 9^{\circ}$ the comparison of KamLAND vs Solar

 $heta_{12}$ better than 1σ agreement But $\sim 2\sigma$ tension on Δm_{12}^2 • Last decade: after including $\theta_{13} \simeq 9^{\circ}$ the comparison of KamLAND vs Solar

 $heta_{12}$ better than 1σ agreement But $\sim 2\sigma$ tension on Δm_{12}^2

• Tension arising from:

Smaller-than-expected MSW low-E turn-up in SK/SNO spectrum at global b.f.

"too large" of Day/Night at SK $A_{D/N,SK4-2055} = [-3.1 \pm 1.6(stat.) \pm 1.4(sys.)]\%$

• Last decade: after including $\theta_{13} \simeq 9^{\circ}$ the comparison of KamLAND vs Solar

 $heta_{12}$ better than 1σ agreement But $\sim 2\sigma$ tension on Δm_{12}^2

• Tension arising from:

Smaller-than-expected MSW low-E turn-up in SK/SNO spectrum at global b.f.

"too large" of Day/Night at SK

 $A_{\rm D/N,SK4-2055} = [-3.1 \pm 1.6(\text{stat.}) \pm 1.4(\text{sys.})]\%$

• AFTER NU2020: With SK4 2970 days data Slightly more pronounced low-E turn-up

Smaller of Day/Night at $A_{D/N,SK4-2055} = [-3.1 \pm 1.6(stat.) \pm 1.4(sys.)]\%$ $A_{D/N,SK4-2970} = [-2.1 \pm 1.1]\%$

• In NuFIT 5.1

 \Rightarrow Agreement of Δm^2_{21} between solar and KamLAND at 1 σ

Global 6-parameter fit http://www.nu-fit.org

Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou, JHEP'20 [2007.14792]

Flavour Parameters: Mixing Matrix

• We have the three leptonic mixing angles determined (at $\pm 3\sigma/6$)

	$(0.801 \rightarrow 0.844)$	$0.513 \rightarrow 0.579$	$0.143 \rightarrow 0.156$
$ U _{3\sigma} =$	0.233 ightarrow 0.507	$0.461 \rightarrow 0.694$	$0.639 \rightarrow 0.778$
	$0.261 \rightarrow 0.526$	$0.471 \rightarrow 0.701$	$0.611 \to 0.761$ /

Flavour Parameters: Mixing Matrix

• We have the three leptonic mixing angles determined (at $\pm 3\sigma/6$)

	$(0.801 \rightarrow 0.844)$	$0.513 \rightarrow 0.579$	$0.143 \rightarrow 0.156$
$ U _{3\sigma} =$	0.233 ightarrow 0.507	$0.461 \rightarrow 0.694$	0.639 ightarrow 0.778
	$0.261 \rightarrow 0.526$	$0.471 \rightarrow 0.701$	0.611 o 0.761 /

• Good progress but still precision very far from:

 $|V|_{\rm CKM} = \begin{pmatrix} 0.97427 \pm 0.00015 & 0.22534 \pm 0.0065 & (3.51 \pm 0.15) \times 10^{-3} \\ 0.2252 \pm 0.00065 & 0.97344 \pm 0.00016 & (41.2^{+1.1}_{-5}) \times 10^{-3} \\ (8.67^{+0.29}_{-0.31}) \times 10^{-3} & (40.4^{+1.1}_{-0.5}) \times 10^{-3} & 0.999146^{+0.000021}_{-0.000046} \end{pmatrix}$

Flavour Parameters: Mixing Matrix

• We have the three leptonic mixing angles determined (at $\pm 3\sigma/6$)

	$(0.801 \rightarrow 0.844)$	$0.513 \rightarrow 0.579$	$0.143 \rightarrow 0.156$
$ U _{3\sigma} =$	0.233 ightarrow 0.507	$0.461 \rightarrow 0.694$	0.639 ightarrow 0.778
	$0.261 \rightarrow 0.526$	0.471 ightarrow 0.701	$0.611 \to 0.761$ /

• Good progress but still precision very far from:

 $|V|_{\rm CKM} = \begin{pmatrix} 0.97427 \pm 0.00015 & 0.22534 \pm 0.0065 & (3.51 \pm 0.15) \times 10^{-3} \\ 0.2252 \pm 0.00065 & 0.97344 \pm 0.00016 & (41.2^{+1.1}_{-5}) \times 10^{-3} \\ (8.67^{+0.29}_{-0.31}) \times 10^{-3} & (40.4^{+1.1}_{-0.5}) \times 10^{-3} & 0.999146^{+0.000021}_{-0.000046} \end{pmatrix}$

• Also very different flavour mixing of leptons vs quarks

Leptonic CPV in 3 ν **Mixing: Jarlskog Invariant**

- Leptonic $\mathcal{Q}P \Rightarrow P_{\nu_{\alpha} \to \nu_{\beta}} \neq P_{\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}}$
- In 3ν always

 $P_{\nu_{\alpha} \to \nu_{\beta}} - P_{\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}} \propto J \quad \text{with} \quad J = \text{Im}(U_{\alpha 1}U_{\alpha_{2}}^{*}U_{\beta 2}U_{\beta_{1}}^{*}) = J_{\text{LEP,CP}}^{\max} \sin \delta_{\text{CP}}$

 $J_{\text{LEP,CP}}^{\text{max}} = \frac{1}{8}c_{13}\,\sin^2 2\theta_{13}\sin^2 2\theta_{23}\sin^2 2\theta_{12}$
Leptonic CPV in 3 ν **Mixing: Jarlskog Invariant**

- Leptonic $\mathcal{Q}P \Rightarrow P_{\nu_{\alpha} \to \nu_{\beta}} \neq P_{\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}}$
- In 3ν always

 $P_{\nu_{\alpha} \to \nu_{\beta}} - P_{\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}} \propto J \quad \text{with} \quad J = \text{Im}(U_{\alpha 1}U_{\alpha_{2}}^{*}U_{\beta 2}U_{\beta_{1}}^{*}) = J_{\text{LEP,CP}}^{\max} \sin \delta_{\text{CP}}$

 $J_{\text{LEP,CP}}^{\text{max}} = \frac{1}{8}c_{13}\,\sin^2 2\theta_{13}\sin^2 2\theta_{23}\sin^2 2\theta_{12}$

• Maximum Allowed Leptonic CPV:

 $J_{\text{LEP,CP}}^{\text{max}} = (3.29 \pm 0.07) \times 10^{-2}$ to compare with

 $J_{\rm CKM, CP} = (3.04 \pm 0.21) \times 10^{-5}$

⇒ Leptonic CPV may be largest CPV in New Minimal SM

if $\sin \delta_{\rm CP}$ not too small

Summary: Global 3 ν **Flavour Parameters**

Global 6-parameter fit http://www.nu-fit.org

Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou, JHEP'20 [2007.14792]

CPV and Ordering in LBL: ν_e appearace

nzalez-Garcia

ν_e and $\overline{\nu}_e$ apperance events

\Rightarrow Each T2K and NO ν A favour NO

CPV and Ordering in LBL: ν_e **appearace** ^{nzalez-Garcia}

 ν_e and $\overline{\nu}_e$ apperance events

 \Rightarrow Each T2K and NO ν A favour NO

CPV and Ordering in LBL: ν_e **appearace** ^{nzalez-Garcia}

 ν_e and $\overline{\nu}_e$ apperance events

 \Rightarrow <u>IO best fit in LBL combination</u>

• Parameter goodness-of-fit (PG) test:

	normal ordering			inverted ordering		
	$\chi^2_{\rm PG}/n$	<i>p</i> -value	$\#\sigma$	$\chi^2_{\rm PG}/n$	<i>p</i> -value	$\#\sigma$
T2K vs NOvA (θ_{13} free)	6.7/4	0.15	1.4σ	3.6/4	0.46	0.7σ
T2K vs NOvA (θ_{13} fix)	6.5/3	0.088	1.7σ	2.8/3	0.42	0.8σ

No significant incompatibility

 \Rightarrow Each T2K and NO ν A favour NO

Δm^2_{3l} in LBL & Reactors

• At LBL determined in ν_{μ} and $\bar{\nu}_{\mu}$ disapperance spectrum

$$\Delta m_{\mu\mu}^2 \simeq \Delta m_{3l}^2 + \frac{c_{12}^2 \Delta m_{21}^2 \text{ NO}}{s_{12}^2 \Delta m_{21}^2 \text{ IO}} + \dots$$

• At MBL Reactors (Daya-Bay, Reno, D-Chooz) determined in $\bar{\nu}_e$ disapp spectrum

$$\Delta m_{ee}^2 \simeq \Delta m_{3l}^2 + \frac{s_{12}^2 \Delta m_{21}^2 \text{ NO}}{c_{12}^2 \Delta m_{21}^2 \text{ IO}} \qquad \text{Nunokawa,Parke,Zukanovich (2005)}$$

 \Rightarrow Contribution to NO/IO from combination of LBL with reactor data

Δm^2_{3l} in LBL & Reactors

• At LBL determined in ν_{μ} and $\bar{\nu}_{\mu}$ disapperance spectrum

$$\Delta m_{\mu\mu}^2 \simeq \Delta m_{3l}^2 + \frac{c_{12}^2 \Delta m_{21}^2 \text{ NO}}{s_{12}^2 \Delta m_{21}^2 \text{ IO}} + \dots$$

• At MBL Reactors (Daya-Bay, Reno, D-Chooz) determined in $\bar{\nu}_e$ disapp spectrum

$$\Delta m_{ee}^2 \simeq \Delta m_{3l}^2 + \frac{s_{12}^2 \Delta m_{21}^2 \text{ NO}}{c_{12}^2 \Delta m_{21}^2 \text{ IO}} \qquad \text{Nunokawa,Parke,Zukanovich (2005)}$$

 \Rightarrow Contribution to NO/IO from combination of LBL with reactor data

- T2K and NO ν A more compatible in IO \Rightarrow IO best fit in LBL combination
- LBL/Reactor complementarity in $\Delta m^2_{3\ell} \Rightarrow NO$ best fit in LBL+Reactors

Δm_{3l}^2 in LBL & Reactors

• At LBL determined in ν_{μ} and $\bar{\nu}_{\mu}$ disapperance spectrum

$$\Delta m_{\mu\mu}^2 \simeq \Delta m_{3l}^2 + \frac{c_{12}^2 \Delta m_{21}^2 \text{ NO}}{s_{12}^2 \Delta m_{21}^2 \text{ IO}} + \dots$$

• At MBL Reactors (Daya-Bay, Reno, D-Chooz) determined in $\bar{\nu}_e$ disapp spectrum

$$\Delta m_{ee}^2 \simeq \Delta m_{3l}^2 + \frac{s_{12}^2 \Delta m_{21}^2}{c_{12}^2 \Delta m_{21}^2} \frac{\text{NO}}{\text{IO}} \qquad \text{Nunokawa,Parke,Zukanovich} (2005)$$

 \Rightarrow Contribution to NO/IO from combination of LBL with reactor data

- T2K and NO ν A more compatible in IO \Rightarrow IO best fit in LBL combination
- LBL/Reactor complementarity in $\Delta m^2_{3\ell} \Rightarrow$ NO best fit in LBL+Reactors
- in NO: b.f $\delta_{\rm CP} = 195^{\circ} \Rightarrow \underline{\text{CPC}}$ allowed at 0.6 σ
- in IO: b.f $\delta_{\rm CP} \sim 270^\circ \Rightarrow \underline{\text{CPC}}$ disfavoured at 3 σ

Near Future for CP and Ordering: Strategies

• $\nu/\bar{\nu}$ comparison with or without Earth matter effects in $\nu_{\mu} \rightarrow \nu_{e} \& \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ at LBL: DUNE (wide band beam, L=1300 km), HK (narrow band beam, L=300 km)

$$P_{\mu e} \simeq s_{23}^2 \sin^2 2\theta_{13} \left(\frac{\Delta_{31}}{\Delta_{31} \pm V}\right)^2 \sin^2 \left(\frac{\Delta_{31} \pm V L}{2}\right) +8 J_{CP}^{\max} \frac{\Delta_{12}}{V} \frac{\Delta_{31}}{\Delta_{31} \pm V} \sin \left(\frac{VL}{2}\right) \sin \left(\frac{\Delta_{31} \pm VL}{2}\right) \cos \left(\frac{\Delta_{31}L}{2} \pm \delta_{CP}\right)$$

 $J_{CP}^{max} = c_{13}^2 s_{13} c_{23} s_{23} c_{12} s_{12}$ – Challenge: Parameter degeneracies, Normalization uncertainty, E_{ν} reconstruction

Near Future for CP and Ordering: Strategies

• $\nu/\bar{\nu}$ comparison with or without Earth matter effects in $\nu_{\mu} \rightarrow \nu_{e} \& \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ at LBL: DUNE (wide band beam, L=1300 km), HK (narrow band beam, L=300 km)

$$P_{\mu e} \simeq s_{23}^2 \sin^2 2\theta_{13} \left(\frac{\Delta_{31}}{\Delta_{31} \pm V}\right)^2 \sin^2 \left(\frac{\Delta_{31} \pm V L}{2}\right) +8 J_{\rm CP}^{\rm max} \frac{\Delta_{12}}{V} \frac{\Delta_{31}}{\Delta_{31} \pm V} \sin \left(\frac{VL}{2}\right) \sin \left(\frac{\Delta_{31} \pm VL}{2}\right) \cos \left(\frac{\Delta_{31} L}{2} \pm \delta_{CP}\right)$$

 $J_{CP}^{max} = c_{13}^2 s_{13} c_{23} s_{23} c_{12} s_{12}$ – Challenge: Parameter degeneracies, Normalization uncertainty, E_{ν} reconstruction

• Reactor experiment at $L \sim 60$ km (vacuum) able to observe the difference between oscillations with Δm_{31}^2 and Δm_{32}^2 : JUNO, RENO-50

$$P_{\nu_e,\nu_e} = 1 - c_{13}^4 \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E}\right) - \sin^2 2\theta_{13} \left[c_{12}^2 \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) + s_{12}^2 \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E}\right)\right]$$

- Challenge: Energy resolution

Near Future for CP and Ordering: Strategies

• $\nu/\bar{\nu}$ comparison with or without Earth matter effects in $\nu_{\mu} \rightarrow \nu_{e} \& \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ at LBL: DUNE (wide band beam, L=1300 km), HK (narrow band beam, L=300 km)

$$P_{\mu e} \simeq s_{23}^2 \sin^2 2\theta_{13} \left(\frac{\Delta_{31}}{\Delta_{31} \pm V}\right)^2 \sin^2 \left(\frac{\Delta_{31} \pm V L}{2}\right) +8 J_{\rm CP}^{\rm max} \frac{\Delta_{12}}{V} \frac{\Delta_{31}}{\Delta_{31} \pm V} \sin \left(\frac{VL}{2}\right) \sin \left(\frac{\Delta_{31} \pm VL}{2}\right) \cos \left(\frac{\Delta_{31} L}{2} \pm \delta_{CP}\right)$$

 $J_{\rm CP}^{\rm max} = c_{13}^2 s_{13} c_{23} s_{23} c_{12} s_{12}$

- Challenge: Parameter degeneracies, Normalization uncertainty, E_{ν} reconstruction
- Reactor experiment at $L \sim 60$ km (vacuum) able to observe the difference between oscillations with Δm_{31}^2 and Δm_{32}^2 : JUNO, RENO-50

$$P_{\nu_e,\nu_e} = 1 - c_{13}^4 \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E}\right) - \sin^2 2\theta_{13} \left[c_{12}^2 \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) + s_{12}^2 \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E}\right)\right]$$

- Challenge: Energy resolution
- Earth matter effects in large statistics ATM ν_{μ} disapp : HK,INO, PINGU,ORCA ...
 - Challenge: ATM flux contains both ν_{μ} and $\bar{\nu}_{\mu}$, ATM flux uncertainties

• Several Observations which can be Interpreted as Oscillations with $\Delta m^2 \sim {
m eV}^2$

LSND & MiniBoone

LSND 2001:

Signal $\nu_{\mu} \rightarrow \nu_{e} (3.8 \sigma)$ MiniBooNE 2020:

 $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \& \nu_{\mu} \rightarrow \nu_{e}$ (639 ± 132.8 events)

Gallium Anomaly

Acero, Giunti, Laveder, 0711.4222 Giunti, Laveder, 1006.3244

Radioactive Sources (⁵¹Cr, ³⁷Ar) in calibration of Ga Solar Exp; $\nu_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^-$

Give a rate lower than expected

Explained as ν_e disappearance

Reactor Anomaly (2011)

a Gonzalez-Garcia

Huber, 1106.0687 Mention *etal* ,1101.2755

New reactor flux calculation

 \Rightarrow Deficit in data at $L \lesssim 100 \text{ m}$

Explained as $\bar{\nu}_e$ disappearance

a Gonzalez-Garcia

a Gonzalez-Garcia

• Several Observations which can be Interpreted as Oscillations with $\Delta m^2 \sim eV^2$ <u>LSND & MiniBoone</u>

LSND 2001:

```
Signal \nu_{\mu} \rightarrow \nu_{e} (3.8 \sigma)
```

MiniBooNE 2020:

 $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \& \nu_{\mu} \rightarrow \nu_{e}$ (639 ± 132.8 events)

MicroBooNE 2021/2022:

No support for excess ν_e interpretation in MiniBooNE

(Fig from Kopp's v2022 talk)MicroBooNE Coll.2110 14054

LSND & MiniBoone

 $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \& \nu_{\mu} \rightarrow \nu_{e}$

 $\sin^2 2\theta_{\mu e} \sim \frac{1}{4} \sin^2 2\theta_{ee} \sin^2 2\theta_{\mu\mu}$

Strong tension with

non-obervation of ν_{μ} dissap

Purely sterile oscillation robustly disfavoured additional SM or NP effects?

LSND & MiniBoone

 $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \& \nu_{\mu} \rightarrow \nu_{e}$

 $\sin^2 2\theta_{\mu e} \sim \frac{1}{4} \sin^2 2\theta_{ee} \sin^2 2\theta_{\mu\mu}$

Strong tension with non-obervation of ν_{μ} dissap

Purely sterile oscillation robustly disfavoured additional SM or NP effects?

Gallium Anomaly

Acero etal, 0711.4222; Giunti, Laveder, 1006.3244

$$\nu_e$$
 + ⁷¹Ga \rightarrow ⁷¹Ge + e^-

Rate lower than expected

Explained as ν_e disappearance

Confirming results from BEST

quires large mixings

Ruled out/tension by solar $\nu's$ Goldhagen etal 2109.14898

Berryman etal 2111.12530

LSND & MiniBoone

 $\bar{\nu}_{\mu} \to \bar{\nu}_{e} \& \nu_{\mu} \to \nu_{e}$ $\sin^{2} 2\theta_{\mu e} \sim \frac{1}{4} \sin^{2} 2\theta_{ee} \sin^{2} 2\theta_{\mu\mu}$

Strong tension with non-obervation of ν_{μ} dissap

Purely sterile oscillation robustly disfavoured additional SM or NP effects?

Gallium Anomaly

Acero etal, 0711.4222;Giunti, Laveder, 1006.3244

 ν_e + ⁷¹Ga \rightarrow ⁷¹Ge + e^-

Rate lower than expected

Explained as ν_e disappearance

Confirming results from BEST

quires large mixings

Ruled out/tension by solar $\nu's$ Goldhagen etal 2109.14898 Berryman etal 2111.12530

Reactor Anomaly

Huber, 1106.068,Mention *etal*,1101.2755 2011 reactor flux calculation \Rightarrow Deficit in $R = \frac{\text{data}}{\text{predict}}$ at $L \lesssim 100 \text{ m}$ Explained as $\bar{\nu}_e$ disappearance

2022 with updated inputs (^{235}U)

Berryman Huber, 2005.01756 Kipeikin etal, 2103.01486 Giunti etal, 2110.06820

(Fig from Giunti etal, 2110.06820)

Anomaly $\sim 1 \sigma$ with new fluxes

a Gonzalez-Garcia

Spectral ratios at different baselines \Rightarrow Independent of flux normalizations.

But low statistical significance (Wilk's theorem fails) Berryman, etal 2111.12530 MC estimation of prob distribution \Rightarrow no significant indication of ν_s oscillations

Non Standard ν **Interactions (NSI)**

At dimension-6 new 4-fermion interactions involving ν 's.

Some can afffect CC process in production and detection

 $(\bar{\nu}_{\alpha}\gamma_{\mu}P_{L}\ell_{\beta})(\bar{f}'\gamma^{\mu}Pf)$

and can be strongly constrained with charged lepton processes

Some affect only NC ν interactions

 $(\bar{\nu}_{\alpha}\gamma_{\mu}P_L\nu_{\beta})(\bar{f}\gamma^{\mu}Pf)$

and are more poorely constrained

NC-Non Standard ν **Interactions in** ν **-OSC**

z-Garcia

Including non-standard neutrino NC interactions with fermion f

$$\mathcal{L}_{\rm NSI} = -2\sqrt{2}G_F \varepsilon^{fP}_{\alpha\beta} (\bar{\nu}_{\alpha}\gamma^{\mu}L\nu_{\beta})(\bar{f}\gamma_{\mu}Pf), \quad P = L, R$$

NC-Non Standard ν **Interactions in** ν **-OSC**

z-Garcia

Including non-standard neutrino NC interactions with fermion f

$$\mathcal{L}_{\rm NSI} = -2\sqrt{2}G_F \varepsilon^{fP}_{\alpha\beta} (\bar{\nu}_{\alpha}\gamma^{\mu}L\nu_{\beta})(\bar{f}\gamma_{\mu}Pf), \quad P = L, R$$

$$H_{\text{mat}} = \sqrt{2}G_F N_e(r) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \sqrt{2}G_F N_e(r) \begin{pmatrix} \varepsilon_{ee} & \varepsilon_{e\mu} & \varepsilon_{e\tau} \\ \varepsilon_{e\mu}^* & \varepsilon_{\mu\mu} & \varepsilon_{\mu\tau} \\ \varepsilon_{e\tau}^* & \varepsilon_{\mu\tau}^* & \varepsilon_{\tau\tau} \end{pmatrix}$$

 $\varepsilon_{\alpha\beta}(r) \equiv \sum_{f=ued} \frac{N_f(r)}{N_e(r)} \varepsilon_{\alpha\beta}^{fV} \Rightarrow 3\nu$ evolution depends on 6 (vac) + 8 per f (mat)

NC-Non Standard ν **Interactions in** ν **-OSC**

z-Garcia

Including non-standard neutrino NC interactions with fermion f

$$\mathcal{L}_{\rm NSI} = -2\sqrt{2}G_F \varepsilon^{fP}_{\alpha\beta} (\bar{\nu}_{\alpha}\gamma^{\mu}L\nu_{\beta})(\bar{f}\gamma_{\mu}Pf), \quad P = L, R$$

$$H_{\text{mat}} = \sqrt{2}G_F N_e(r) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \sqrt{2}G_F N_e(r) \begin{pmatrix} \varepsilon_{ee} & \varepsilon_{e\mu} & \varepsilon_{e\tau} \\ \varepsilon_{e\mu}^* & \varepsilon_{\mu\mu} & \varepsilon_{\mu\tau} \\ \varepsilon_{e\tau}^* & \varepsilon_{\mu\tau}^* & \varepsilon_{\tau\tau} \end{pmatrix}$$

$$N_e(r)$$

 $\varepsilon_{\alpha\beta}(r) \equiv \sum_{f=ued} \frac{N_f(r)}{N_e(r)} \varepsilon_{\alpha\beta}^{fV} \Rightarrow 3\nu \text{ evolution depends on } 6 \text{ (vac)} + 8 \text{ per } f \text{ (mat)}$

 \Rightarrow Parameters degeneracies

In particular $H \rightarrow -H^* \Rightarrow$ same Probabilities \Rightarrow invariance under simultaneously:

$$\begin{aligned} \theta_{12} \leftrightarrow \frac{\pi}{2} - \theta_{12} , & (\varepsilon_{ee} - \varepsilon_{\mu\mu}) \rightarrow -(\varepsilon_{ee} - \varepsilon_{\mu\mu}) - 2 , \\ \Delta m_{31}^2 \rightarrow -\Delta m_{32}^2 , & (\varepsilon_{\tau\tau} - \varepsilon_{\mu\mu}) \rightarrow -(\varepsilon_{\tau\tau} - \varepsilon_{\mu\mu}) , \\ \delta \rightarrow \pi - \delta , & \varepsilon_{\alpha\beta} \rightarrow -\varepsilon_{\alpha\beta}^* & (\alpha \neq \beta) , \end{aligned}$$

 \Rightarrow Degeneracies in θ_{12} octant and mass ordering

Concha Gonzalez-Garcia

NSI: Bounds/Degeneracies from/in Oscillation data

Esteban etal JHEP'18[1805.04530] Coloma, Esteban, MCGG, Maltoni, JHEP'19[1911.09109] (updated 2020)

.

	LMA	
$\begin{array}{l} \varepsilon^{u}_{ee} - \varepsilon^{u}_{\mu\mu} \\ \varepsilon^{u}_{\tau\tau} - \varepsilon^{u}_{\mu\mu} \end{array}$	$\begin{matrix} [-0.072, +0.321] \\ [-0.001, +0.018] \end{matrix}$	
$\varepsilon^{u}_{e\mu}$	[-0.050, +0.020]	
$\varepsilon_{e\tau}^{u}$	$\left[-0.077, +0.098 ight]$	
$\varepsilon^{u}_{\mu\tau}$	$\left[-0.006, +0.007 ight]$	

• Standard Solution \equiv LMA \Rightarrow Bounds O(1% - 10%)

NSI: Bounds/Degeneracies from/in Oscillation data

Esteban etal JHEP'18[1805.04530] Coloma, Esteban, MCGG, Maltoni, JHEP'19[1911.09109] (updated 2020)

	LMA	
$\begin{array}{l} \varepsilon^{u}_{ee}-\varepsilon^{u}_{\mu\mu}\\ \varepsilon^{u}_{\tau\tau}-\varepsilon^{u}_{\mu\mu} \end{array}$	$\begin{matrix} [-0.072, +0.321] \\ [-0.001, +0.018] \end{matrix}$	-
$\varepsilon^{u}_{e\mu}$ $\varepsilon^{u}_{e\tau}$	$\begin{bmatrix} -0.050, +0.020 \\ [-0.077, +0.098 \end{bmatrix}$	
$\varepsilon^{u}_{\mu\tau}$	[-0.006, +0.007]	

• Standard Solution \equiv LMA \Rightarrow Bounds O(1% - 10%)

Concha Gonzalez-Garcia

 \Rightarrow Maximum effect at LBL experiments:

⇒ To be considered in effects/sensitivity studies at DUNE, HK... (tables available)

NSI: Bounds/Degeneracies from/in Oscillation data

Esteban etal JHEP'18[1805.04530] Coloma, Esteban, MCGG, Maltoni, JHEP'19[1911.09109] (updated 2020)

	LMA	$\rm LMA \oplus \rm LMA\text{-}\rm D$
$ \begin{array}{c} \varepsilon^{u}_{ee} - \varepsilon^{u}_{\mu\mu} \\ \varepsilon^{u}_{\tau\tau} - \varepsilon^{u}_{\mu\mu} \end{array} $	$\begin{array}{l} [-0.072, +0.321] \\ [-0.001, +0.018] \end{array}$	$\oplus [-1.042, -0.743]$ [-0.016, +0.018]
$\varepsilon^{u}_{e\mu}$ $\varepsilon^{u}_{e\tau}$ ε^{u}	[-0.050, +0.020] [-0.077, +0.098] [-0.006, +0.007]	[-0.050, +0.059] [-0.111, +0.098] [-0.006, +0.007]

• Standard Solution \equiv LMA \Rightarrow Bounds O(1% - 10%)

Concha Gonzalez-Garcia

 \Rightarrow Maximum effect at LBL experiments:

- ⇒ To be considered in effects/sensitivity studies at DUNE, HK... (tables available)
- Degenerate solution ≡LMA-D Miranda,Tortola, Valle, hep-ph/0406280

$$\Rightarrow \theta_{12} \leftrightarrow \frac{\pi}{2} - \theta_{12} \quad \& \quad (\varepsilon_{ee} - \varepsilon_{\mu\mu}) \rightarrow -(\varepsilon_{ee} - \varepsilon_{\mu\mu}) - 2$$

NSI: Bounds/Degeneracies from/in Oscillation data

Esteban etal JHEP'18[1805.04530] Coloma, Esteban, MCGG, Maltoni, JHEP'19[1911.09109] (updated 2020)

	LMA	$\rm LMA \oplus \rm LMA\text{-}\rm D$		
$\begin{array}{l} \varepsilon^{u}_{ee}-\varepsilon^{u}_{\mu\mu}\\ \varepsilon^{u}_{\tau\tau}-\varepsilon^{u}_{\mu\mu} \end{array}$	$\begin{array}{l} [-0.072, +0.321] \\ [-0.001, +0.018] \end{array}$	$\oplus [-1.042, -0.743]$ [-0.016, +0.018]		
$\varepsilon^{u}_{e\mu}$ $\varepsilon^{u}_{e\tau}$ $\varepsilon^{u}_{e\tau}$	[-0.050, +0.020] [-0.077, +0.098] [-0.006, +0.007]	[-0.050, +0.059] [-0.111, +0.098] [-0.006, +0.007]		

• Standard Solution \equiv LMA \Rightarrow Bounds O(1% - 10%)

Concha Gonzalez-Garcia

 \Rightarrow Maximum effect at LBL experiments:

- ⇒ To be considered in effects/sensitivity studies at DUNE, HK... (tables available)
- Degenerate solution ≡LMA-D Miranda,Tortola, Valle, hep-ph/0406280
 - $\Rightarrow \theta_{12} \leftrightarrow \frac{\pi}{2} \theta_{12} \quad \& \quad (\varepsilon_{ee} \varepsilon_{\mu\mu}) \rightarrow -(\varepsilon_{ee} \varepsilon_{\mu\mu}) 2$
 - \Rightarrow Requires NSI $\sim G_F$ (light mediators?) Farzan 1505.06906, and Shoemaker 1512.09147

Concha Gonzalez-Garcia

Oscillation bounds on Z'/Dark Photons

Coloma, MCGG, Maltoni, JHEP'21 [2009.14220]

Interpreting

 $\frac{g'^2}{M_{Z'}^2} \, q'_f \, q'_\nu$ \Leftarrow

 $\epsilon^{J}_{\alpha\beta}$

Z'/Dark-photon: Bounds from ν Oscillations

z-Garcia

Coloma, MCGG, Maltoni, JHEP'21 [2009.14220]

Very light $(M' \leq \mathcal{O}(eV))$ mediator \Rightarrow Long Range Force to Contact Interaction in H_{mat}

Z' Models: ν Oscillations Bounds

Coloma, MCGG, Maltoni ArXiv:2009.14220

$M_{Z'} \gtrsim \mathcal{O}(\text{MeV}) \Rightarrow \text{Contact Interaction in } H_{\text{mat}}$

Confirmed Low Energy Picture and MY List of Q&A

- At least two neutrinos are massive \Rightarrow There is NP
- Oscillations DO NOT determine the lightest mass
 - Only model independent probe of $m_{\nu} \beta$ decay: $\sum m_i^2 |U_{ei}|^2 \le (0.8 \text{ eV})^2$ Katrin 2021
- Dirac or Majorana?: Anxiously waiting for ν -less $\beta\beta$ decay Lecture by S. Bettini
- Three mixing angles are non-zero (and relatively large) \Rightarrow very different from CKM
- Leptonic CP and Ordering: "Hints" but not confirmation Definite answer may require new oscillation experiments
- Only three light states? Some old anomalies supporting light sterile neutrinos vanishing, and tensions with new experiments
- Other NP at play in oscillations Interesting effects of NP with light mediators

Confirmed Low Energy Picture and MY List of Q&A

- At least two neutrinos are massive \Rightarrow There is NP
- Oscillations DO NOT determine the lightest mass
 - Only model independent probe of $m_{\nu} \beta$ decay: $\sum m_i^2 |U_{ei}|^2 \le (0.8 \text{ eV})^2$ Katrin 2021
- Dirac or Majorana?: Anxiously waiting for ν -less $\beta\beta$ decay Lecture by S. Bettini
- Three mixing angles are non-zero (and relatively large) \Rightarrow very different from CKM
- Leptonic CP and Ordering: "Hints" but not confirmation Definite answer may require new oscillation experiments
- Only three light states? Some old anomalies supporting light sterile neutrinos vanishing, and tensions with new experiments
- Other NP at play in oscillations Interesting effects of NP with light mediators
- What about a UV complete model?: It will need a positive signal in colliders

Confirmed Low Energy Picture and MY List of Q&A

- At least two neutrinos are massive \Rightarrow There is NP
- Oscillations DO NOT determine the lightest mass
 - Only model independent probe of $m_{\nu} \beta$ decay: $\sum m_i^2 |U_{ei}|^2 \le (0.8 \text{ eV})^2$ Katrin 2021
- Dirac or Majorana?: Anxiously waiting for ν -less $\beta\beta$ decay Lecture by S. Bettini
- Three mixing angles are non-zero (and relatively large) \Rightarrow very different from CKM
- Leptonic CP and Ordering: "Hints" but not confirmation Definite answer may require new oscillation experiments
- Only three light states? Some old anomalies supporting light sterile neutrinos vanishing, and tensions with new experiments
- Other NP at play in oscillations Interesting effects of NP with light mediators
- What about a UV complete model?: It will need a positive signal in colliders
- Neutrinos in Cosmology? Lectures by L. Verde

. . .

• Astrophysics/Astronomy with Neutrinos? Lecture by F.Halzen

Neutrinos always "Left-Handed" \equiv **Massless**

• If ν had a mass they would not go to the speed of light:

 \Rightarrow the direction of its momentum depends on the reference frame

So in one reference frame

Neutrinos always "Left-Handed" \equiv **Massless**

• If ν had a mass they would not go to the speed of light:

 \Rightarrow the direction of its momentum depends on the reference frame

So in one reference frame

And in another

Neutrinos always "Left-Handed" \equiv **Massless**

• If ν had a mass they would not go to the speed of light:

 \Rightarrow the direction of its momentum depends on the reference frame

So in one reference frame

So if always left \Rightarrow

Strictly massless

And in another

The Other Flavours

 ν coming out of a nuclear reactor is $\overline{\nu}_e$ because it is emitted together with an e^-

Question: Is it different from the muon type neutrino ν_{μ} that could be associated to the muon? Or is this difference a theoretical arbitrary convention?
ν coming out of a nuclear reactor is $\overline{\nu}_e$ because it is emitted together with an e^-

Question: Is it different from the muon type neutrino ν_{μ} that could be associated to the muon? Or is this difference a theoretical arbitrary convention?

In 1959 M. Schwartz thought of producing an intense ν beam from π 's decay (produced when a proton beam of GeV energy hits matter) protons Schwartz, Lederman, Steinberger and Gaillard built a spark chamber (a 10 tons of neon gas) to detect ν_{μ}

 ν coming out of a nuclear reactor is $\overline{\nu}_e$ because it is emitted together with an e^-

Question: Is it different from the muon type neutrino ν_{μ} that could be associated to the muon? Or is this difference a theoretical arbitrary convention?

In 1959 M. Schwartz thought of producing an intense ν beam from π 's decay (produced when a proton beam of GeV energy hits matter) protons Schwartz, Lederman, Steinberger and Gaillard built a spark chamber (a 10 tons of neon gas) to detect ν_{μ}

They observe 40 ν interactions: in 6 an e^- comes out and in 34 a μ^- comes out.

If $\nu_{\mu} \equiv \nu_{e} \Rightarrow$ equal numbers of μ^{-} and e^{-}

 ν coming out of a nuclear reactor is $\overline{\nu}_e$ because it is emitted together with an e^-

Question: Is it different from the muon type neutrino ν_{μ} that could be associated to the muon? Or is this difference a theoretical arbitrary convention?

In 1959 M. Schwartz thought of producing an intense ν beam from π 's decay (produced when a proton beam of GeV energy hits matter) protons Schwartz, Lederman, Steinberger and Gaillard built a spark chamber (a 10 tons of neon gas) to detect ν_{μ}

They observe 40 ν interactions: in 6 an e^- comes out and in 34 a μ^- comes out.

If $\nu_{\mu} \equiv \nu_{e} \Rightarrow$ equal numbers of μ^{-} and $e \rightarrow \Rightarrow$ Conclusion: ν_{μ} is a different particle

 ν coming out of a nuclear reactor is $\overline{\nu}_e$ because it is emitted together with an e^-

Question: Is it different from the muon type neutrino ν_{μ} that could be associated to the muon? Or is this difference a theoretical arbitrary convention?

In 1959 M. Schwartz thought of producing an intense ν beam from π 's decay (produced when a proton beam of GeV energy hits matter) protons Schwartz, Lederman, Steinberger and Gaillard built a spark chamber (a 10 tons of neon gas) to detect ν_{μ}

They observe 40 ν interactions: in 6 an e^- comes out and in 34 a μ^- comes out.

If $\nu_{\mu} \equiv \nu_{e} \Rightarrow$ equal numbers of μ^{-} and $e \rightarrow \Rightarrow$ Conclusion: ν_{μ} is a different particle

In 1977 Martin Perl discovers the particle tau \equiv the third lepton family.

The ν_{τ} was observed by **DONUT** experiment at FNAL in 1998 (officially in Dec. 2000).

If SM is an effective low energy theory, for $E \ll \Lambda_{\rm NP}$

- The same particle content as the SM and same pattern of symmetry breaking
- But there can be non-renormalizable

(dim> 4) operators

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \sum_{n} \frac{1}{\Lambda_{\rm NP}^{n-4}} \mathcal{O}_n$$

If SM is an effective low energy theory, for $E \ll \Lambda_{\rm NP}$

- The same particle content as the SM and same pattern of symmetry breaking
- But there can be non-renormalizable (dim> 4) operators

First NP effect \Rightarrow dim=5 operator There is only one!

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \sum_{n} \frac{1}{\Lambda_{\rm NP}^{n-4}} \mathcal{O}_n$$

$$\mathcal{L}_5 = \frac{Z_{ij}^{\nu}}{\Lambda_{\rm NP}} \left(\overline{L_{L,i}} \tilde{\phi} \right) \left(\tilde{\phi}^T L_{L,j}^C \right)$$

If SM is an effective low energy theory, for $E \ll \Lambda_{\rm NP}$

- The same particle content as the SM and same pattern of symmetry breaking
- But there can be non-renormalizable (dim> 4) operators
- First NP effect \Rightarrow dim=5 operator There is only one!
- which after symmetry breaking induces a ν Majorana mass

 $\mathcal{L} = \mathcal{L}_{\rm SM} + \sum_{n} \frac{1}{\Lambda_{\rm NP}^{n-4}} \mathcal{O}_n$

$$\mathcal{L}_5 = \frac{Z_{ij}^{\nu}}{\Lambda_{\rm NP}} \left(\overline{L_{L,i}} \tilde{\phi} \right) \left(\tilde{\phi}^T L_{L,j}^C \right)$$

$$(M_{\nu})_{ij} = Z_{ij}^{\nu} \frac{v^2}{\Lambda_{\rm NP}}$$

If SM is an effective low energy theory, for $E \ll \Lambda_{\rm NP}$

- The same particle content as the SM and same pattern of symmetry breaking

– But there can be non-renormalizable (dim> 4) operators

First NP effect \Rightarrow dim=5 operator There is only one!

which after symmetry breaking induces a ν Majorana mass

Implications:

- It is natural that ν mass is the first evidence of NP
- Naturally $m_{\nu} \ll$ other fermions masses $\sim \lambda^f v$ if $\Lambda_{\rm NP} >> v$
- See-saw with heavy ν_R integrated out is a particular example of this

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \sum_{n} \frac{1}{\Lambda_{\rm NP}^{n-4}} \mathcal{O}_n$$

$$\mathcal{L}_5 = \frac{Z_{ij}^{\nu}}{\Lambda_{\rm NP}} \left(\overline{L_{L,i}} \tilde{\phi} \right) \left(\tilde{\phi}^T L_{L,j}^C \right)$$

$$(M_{\nu})_{ij} = Z_{ij}^{\nu} \frac{v^2}{\Lambda_{\rm NP}}$$

Neutrino Mass Scale: Other Channels

Muon neutrino mass

• From the two body decay at rest

 $\pi^- \to \mu^- + \overline{\nu}_\mu$

• Energy momentum conservation:

$$m_{\pi} = \sqrt{p_{\mu}^2 + m_{\mu}^2} + \sqrt{p_{\mu}^2 + m_{\nu}^2}$$
$$m_{\nu}^2 = m_{\pi}^2 + m_{\mu}^2 - 2 + m_{\mu}\sqrt{p^2 + m_{\pi}^2}$$

- Measurement of p_{μ} plus the precise knowledge of m_{π} and $m_{\mu} \Rightarrow m_{\nu}$
- The present experimental result bound:

 $m_{\nu_{\mu}}^{eff} \equiv \sqrt{\sum m_{j}^{2} |U_{\mu j}|^{2}} < 190 \text{ KeV}$

Tau neutrino mass

- The τ is much heavier $m_{\tau} = 1.776 \text{ GeV}$ \Rightarrow Large phase space \Rightarrow difficult precision for m_{ν}
- The best precision is obtained from hadronic final states

$$\tau \to n\pi + \nu_{\tau} \quad \text{with } n \ge 3$$

• Lep I experiments obtain:

$$m_{\nu_{\tau}}^{eff} \equiv \sqrt{\sum m_{j}^{2} |U_{\tau j}|^{2}} < 18.2 \text{ MeV}$$

Neutrino Mass Scale: Other Channels

Muon neutrino mass

• From the two body decay at rest

 $\pi^- o \mu^- + \overline{\nu}_\mu$

• Energy momentum conservation:

$$m_{\pi} = \sqrt{p_{\mu}^2 + m_{\mu}^2} + \sqrt{p_{\mu}^2 + m_{\nu}^2}$$
$$m_{\nu}^2 = m_{\pi}^2 + m_{\mu}^2 - 2 + m_{\mu}\sqrt{p^2 + m_{\pi}^2}$$

- Measurement of p_{μ} plus the precise knowledge of m_{π} and $m_{\mu} \Rightarrow m_{\nu}$
- The present experimental result bound:

 $m_{\nu_{\mu}}^{eff} \equiv \sqrt{\sum m_{j}^{2} |U_{\mu j}|^{2}} < 190 \text{ KeV}$

Tau neutrino mass

- The τ is much heavier $m_{\tau} = 1.776 \text{ GeV}$ \Rightarrow Large phase space \Rightarrow difficult precision for m_{ν}
- The best precision is obtained from hadronic final states

$$au o n\pi + \nu_{ au}$$
 with $n \ge 3$

• Lep I experiments obtain:

$$m_{\nu_{\tau}}^{eff} \equiv \sqrt{\sum m_{j}^{2} |U_{\tau j}|^{2}} < 18.2 \text{ MeV}$$

 \Rightarrow If mixing angles U_{ej} are not negligible Best kinematic limit on Neutrino Mass Scale comes from Tritium Beta Decay To allow observation of neutrino oscillations:

- Nature has to be good: $\theta \not < 0$ Need the right set up (\equiv right $\langle \frac{L}{E} \rangle$) for Δm^2

Source	E (GeV)	L (Km)	$\Delta m^2~({ m eV}^2)$		
Solar	10^{-3}	10^{7}	10^{-10}		
Atmos	$0.1 - 10^2$	$10 - 10^3$	$10^{-1} - 10^{-4}$		
Reactor	10^{-3}	SBL : 0.1–1	$10^{-2} - 10^{-3}$		
		LBL : 10–10 ²	$10^{-4} - 10^{-5}$		
Accel	10	SBL : 0.1 LBL : 10 ² – 10 ³	$\gtrsim 0.01$ 10^{-2} - 10^{-3}		

Compatibility T2K/NO ν **A**

Concha Gonzalez-Garcia

• 1 and 2 σ (2dof) allowed regions (for $s_{13}^2 = 0.0224$, marg over $|\Delta m_{3\ell}^2|$)

 \Rightarrow Better agreement in IO but NO 1 σ regions "touch"

Compatibility T2K/NO ν **A**

Concha Gonzalez-Garcia

• 1 and 2 σ (2dof) allowed regions (for $s_{13}^2 = 0.0224$, marg over $|\Delta m_{3\ell}^2|$)

- \Rightarrow Better agreement in IO but NO 1 σ regions "touch"
- Parameter goodness-of-fit (PG) test:

	normal ordering			inverted ordering		
	$\chi^2_{ m PG}/n$	<i>p</i> -value	$\#\sigma$	$\chi^2_{ m PG}/n$	<i>p</i> -value	$\#\sigma$
T2K vs NOvA (θ_{13} free)	6.7/4	0.15	1.4σ	3.6/4	0.46	0.7σ
T2K vs NOvA (θ_{13} fix)	6.5/3	0.088	1.7σ	2.8/3	0.42	0.8σ

No significant incompatibility

Z' Models: Viable models for LMA-D

Concha Gonzalez-Garcia

Coloma, MCGG, Maltoni, JHEP'21 [2009.14220]

