International School of Subnuclear Physics «Gravity and matter in the subnuclear world»

ATLAS and CMS Highlights

Marina Cobal University of Udine & INFN TS, ICTP Visiting Scientist Erice, 15-24 June 2022

The LHC machine in Run 2

27 km ring 100 m underground p-p collisions E_{cm} =13.6 TeV

v_p = 99.999991% of c

1720 Power converters > 9000 magnetic elements 7568 Quench detection systems 1088 Beam position monitors ~4000 Beam loss monitors

150 tonnes helium, ~90 tonnes at 1.9 K 350 MJ stored beam energy in 2016 1.2 GJ magnetic energy per sector at 6.5 TeV

Key parameters

- Key parameters at a collider:
 - Collision energy

 Set by dipole bending magnets (1232)

• Luminosity

 $\odot\,\text{How}$ many collisions occur

• Number of events for a given process:

 N = cross-section x luminosity cross-section depends on collisions energy

ATLAS/CMS Detectors

Same physics goals, different design choices,

Magnets

Calorimeters

- ATLAS Solenoid (2T) + 3 Toroids (muon system)
- CMS: Large Solenoid (3.8T)

- ATLAS: LAr ECAL(longitudinal granularity), outside solenoid
- CMS: Crystal ECAL, inside solenoid

LHC physics program

- Physics@LHC is most ambitious and farthest reaching HEP program ever
- Huge dataset + well understood detector performance
- Only place to produce key SM particles: 8M Higgs, 0.1G Top, 0.5G W, Z
- **O** Precision measurements
 - ✓ Determine fundamental parameters, probe higher order QCD and EW effects
- Access to rare processes (eg: production of WWW and tttt)
 - ✓ Probe poorly or untested corners of the SM
- Broad search program @ TeV scale (high energy frontier) & feeble interactions
- Study of new state of matter (quark-gluon plasma)

New physics at collider experiments

- SM successful for particle collisions
- Discrepancies may indicate new physics ≡ new particles/fields

Direct observations of new particles

- Combine known particles to create "invariant masses" & search for "resonance" enhancements above background
- Observe through unusual signatures in detectors (anomalously high dE/dx tracks...)

Indirect observations of new particles

- Compare SM predictions with data
- Search for any discrepancy with SM background
- Explain using theoretical frameworks beyond SM (BSM)

LHC

Huge scientific production

Run 2 Breakthroughs

• Higgs

- Observation of all main production mechanisms
- Observation of Yukawa interactions w/ 3rd generation fermions
- Constraints on Higgs self-interaction via HH cross section

Rare processes

- \circ Observation of weak boson scattering modes (incl. W[±]W[±])
- $\circ~$ Observation of ttW, ttZ and tZq
- Evidence for tttt production

• Searches

- Excluded a wide range of BSM parameter space with a broad search program
 - SUSY & resonances: gluino, squark, stop and Z' exclusions* up to m= 2.3, 2.0, 1.3 and 5.0 TeV
 - **Dark matter** constraints, incl. $H \rightarrow$ invisible <~10%
 - Challenging signatures such as compressed spectra, displaced vertices, long-lived particles etc..

Precision Measurements

- Stringent tests of Higgs Mechanisms
- Measure Yukawa Couplings
- Stringent Tests of SM self-consistency

Higgs

SM Higgs nowadays

Spin/CP

Higgs mass

Higgs signal

Higgs width

Higgs Signal strenght: Precision!

CCMS with testing

Higgs Couplings: Precision!

Top quark

- Heaviest SM particle
- Key to electroweak precision fits

• Large top mass implies meta-stable universe

Top quark mass best measurement

Top mass definition

• Direct measurement:

o rely on parton shower simulation

- \circ build templates dependent on m_{top} (parameter in the simulation)
- yield small uncertainties
- o relation to a theoretically well defined mass has an uncertainty of O(0.1–1 GeV)

theoretical m_{top} depends on renormalization scheme. Choice is the pole mass m_{pole}

$$\frac{i}{\not p - m_0} \Rightarrow \frac{i}{\not p - \underbrace{m_0(\Lambda)}_{\text{'bare' mass}} - \underbrace{\delta m_0(\Lambda)}_{\text{divergent}} - \underbrace{\Sigma' m_0(\Lambda)}_{\text{finite}} := \frac{i}{\not p - m^{\text{pole}}}$$

• Extracted via differential cross sections

o unfolding procedure yield typically bigger uncertainty than direct measurement

Top mass & cross section: Precision

assess if (only) SM or deviations?

Direct Mass measurement

Top mass & cross section: Precision

assess if (only) SM or deviations?

Pole Mass measurement

Top pair production at 5.02 TeV

- Just 1 week of data taking at 5.02 TeV in 2017 (small dataset of 0.26 fb⁻¹)!
- Excellent precision reached (single+di-lepton decays and combination), similar to the one obtained @ 13 TeV with 500 times more data!
- X-sec value more than a factor of ten smaller than @ 13 TeV

Standard Model Summary

Standard Model Summary

Observation of the $\gamma\gamma \rightarrow \tau\tau$ process in Pb+Pb collisions

- First observation of ττ lepton production in ultraperipheral nucleus-nucleus collisions.
- + E_{cm} of 5.02 TeV, integrated luminosity 404 μb^{-1}

 $\sigma(\gamma\gamma \rightarrow \tau + \tau -) = 4.8 \pm \pm 0.6 \text{ (stat)} \pm 0.5 \text{ (syst)} \mu b$

Muon p_T sensitive to a_{τ} . As at LEP, templates with distributions of p_T are used in the fit to determine a_{τ} .

Rare SM Processes

- Measure parameters of EW symmetry breaking
- Sensitive to many models of **new physics**

Four-top-quark production cross section

JHEP11(2021)118

New Physics

Standard Model Effective Field Theory

Consistent framework to parametrize possible deviations in a model independent way by encapsulating new physics effects in higher- dimensional operators involving the SM fields

Assume the SM Lagrangian correct but incomplete

EFT includes the appropriate degrees of freedom to describe physical phenomena at a chosen energy scale, ignoring substructure/degrees of freedom at higher energies

Add to the SM Lagrangian higher dimensional operators weighted by a certain coefficient

CMS, tČγ* [2] CMS, tČγ* [2] CMS, tČz [3] CMS, tČ+Z/W/H, tZq.tHq [4] 78 fb⁻¹ 42 fb⁻¹ CMS, tτγ^e [2] CMS, tτZ [3] 137 fb⁻¹ 78 fb⁻¹ Õ., ĉ. ATLAS, tTZ [5] 36 fb⁻ ATLAS, Top polarization [6] 139 fb 36 fb⁻¹ ATLAS, ttZ [5] ATLAS+CMS, W helicity [7] CMS, tZq/ttZ [1] ĉ., 20+20 ft 138 fb MS, tt and tW, BSM search [8] MS, tt+Z/W/H, tZa.tHa [4] 36 fb⁻¹ 42 fb⁻¹ $\widetilde{C}_{u}^{[l]}$ ATLAS. Top polarization [6] 139 fb C_{bw} MS. tr+Z/W/H. tZa.tHa [4] 42 fb⁻¹ \widetilde{C}_{tG} / g ATLAS, tr 1+jets boosted [9] 139 fb⁻ MS, tr and tW, BSM search [3 MS tr spin correlations [10] 36 fb⁻¹ \tilde{C}_{tG} 36 fb⁻¹ 42 fb⁻¹ MS, tt spin correlations [10] MS, tt+Z/W/H, tZq,tHq [4] $\begin{array}{c} \tilde{C}_{10}^{(1)} \\ \tilde{C}_{10}^{(2)} \\ \tilde{C}_$ MS. tr spin correlations [10] 36 fb: TLAS, FCNC tqy* [11] 139 fb TLAS, FCNC tqy* [11] 139 fb TLAS, FCNC tay* [11] 130 fb ATLAS, FCNC toy* [11] 130 fb ATLAS. FCNC (Zo 112) 139 fb ATLAS, FCNC tZg [12] 139 fb ATLAS, FCNC tZq [12] 139 fb ATLAS, FCNC tZa [12] 139 fb ATLAS, FCNC tZq [12] 139 fb⁻¹ limits ATLAS ECNC (Zo 112) 139 fb⁻ ATLAS, FCNC tZq [12] 139 fb⁻¹ ATLAS FCNC (Za 112) 139 fb⁻¹ ATLAS FCNC tog [13] 139 fb⁻¹ 36 fb⁻¹ $|\tilde{C}_{uG}|$ MS, tt and tW, BSM search [8] ATLAS, FCNC tqg [13] 139 fb |ĉ₀₀ | CMS, tt and tW, BSM search [8] 36 fb: 9] arXiv:2202.12134 10] PRD 100 (2019) 072 -4 -2 0 2 4

March 2022

* Preliminary

138 fb

137 fb

ollowing arXiv:1802.07237

Dimension 6 operators

 $\tilde{C} = C_1 / \Lambda^2$

CMS, tZq/ttZ [1]

ATLAS+CMS Preliminarv

(Top) quark - vector boson operators - Individual limits

95% CL limit [TeV-2]

CMS ATLAS+CMS

LHC*top*WG

ĉ.,

- ATLAS

Look for additional interactions between SM particles due to exchanges of heavier particles and put constraints on coefficients

Most efficient way to extract largest amount of info from LHC/other experiments

Model-independent way to look for physics beyond the SM

Long Lived Particles (LLP)

- From a hierarchy of scales or a small coupling (i.e. RP violating SUSY, Dark QED/Dark Photons...)
- Could travel sizeable distances through the detector before decay

• Special reconstruction technique!

Long Lived Particles (LLP)

- From a hierarchy of scales or a small coupling (i.e. RP violating SUSY, Dark QED/Dark Photons...)
- Could travel sizeable distances through the detector before decay

Special reconstruction technique!

LLP different signatures

Heavy charged LLP, large $\Delta E / \Delta x$

Slower than c, high p_{T_r} large dE/dx. Probe τ O(1) ns , masses from 100 GeV to 3 TeV.

- 3.3 σ excess in ~1.4 TeV mass hypothesis
- Tracks study shows no slow-moving

Displaced photons in Higgs exotic decays First LHC constraints, based on pointing and timing info..

- Data consistent with background
- Excluded various supersymmetric models

Boosted heavy diboson resonances

New particle excluded. up to 4.8 TeV (most stringent constraint to date),

New graviton resonances (scenarios with extra space-time dimensions,) excluded up to 1.4 TeV

Combined search for heavy resonance Sature

- 12 individual searches (2018 2022), each one optimized on its own
- Statistical combination for different bosonic decay modes
- Results in context of Spin-1 Heavy Vector Triplet (HVT) model
- Constraints expressed in terms of couplings to quarks, leptons and fermions
- HVT with mass < 5.8 (4.5) TeV excluded in a weakly (strongly) coupled scenario.

Searches for Dark Matter

IF new particles exist and IF at EW scale \rightarrow within LHC energy reach

Production

Several models for production mechanism

- From low energy/thermal interactions with other SM particles in the early Universe → masses from few keV to hundreds of TeV
- through more energetic collisions (masses well below the eV)

Searches classifications

Based on SM particles coming along in the final state

- With single high p_T jet: probe models with DM produced via exchange of a neutral mediator
- With heavy flavor quarks
- With only a single photon or Z boson (DM interactions with EW gauge bosons)

Dark Matter Summary

Complementary to direct detection experiments:

- Strong (model-dependent) limits for low mass
- Strong limits for spin-dependent DM- nucleons
- Comprehensive searches for DM-SM mediators

- Adopt simplified DM model with a "mediator" V
- g_q (g_{DM}) mediator coupling to quarks (DM)
- m_{med} (m_{DM}) mass of mediator (DM)
- ATLAS & CMS: g_q=0.25 (S=1), g_q=1 (S=0), g_{DM} =1

Leptoquarks

4321 Model:

- SM extension with an SU(4) × SU(3)' × SU(2)L × U(1)' gauge sector
- Leptoquark (LQ) predicted as primary source of lepton flavour, vector-like leptons are the lightest new particles

Leptoquarks

Vector LQ motivated by B-physics anomalies, e.g., lepton flavour (non-) universality in NC & CC B decays

- New particles that would interact (and decay) with quark and leptons
- Color triplet bosons, carrying lepton and barion numbers
- In SM extensions as <u>technicolor</u> theories, theories of quark-lepton unification, or <u>GUTs</u> based on <u>SU(5)</u>, <u>SO(10)</u>.

Leptoquarks

Reinterpretations

LHC limits for direct and indirect BSM searches

- ~100 decay channels with various models that predict certain production rate (extra dim., gauge bosons, contact interactions, dark matter, heavy quarks, excited fermions, LQ)
- Commonly excluded masses ~ 0.4 12 TeV
- But ..plenty of models that predict too small cross section for exclusion!

The future

Run 3 (13.6 TeV)

- LHC Run 3 is about to start
- Extension of Run 3 by one year and an extension of LS3 by six months,

overall shift of Run-4 by 18 months.

First 13.6 TeV stable beams:

1200 bunches collisions on July 5th
86 pp physics days (> 1200 bunches)

PbPb running:

- 27 HI physics days

LHC L _{int}	Run 2	Run 3 (estimate delivered)
ATLAS/CMS pp	140 fb ⁻¹	300 fb ⁻¹

[Generated at: 2022-06-14 17:17:07]

Toward the future: HL-LHC

Physics potential @ HL-LH

- More powerful detectors (new trackers, new triggers, new timing info..)
- Much higher luminosity

Higgs

Higgs factory: 170 million of Higgs

Couplings: From precision of 8-10% to few %.

Self-coupling: : Evidence for, if not discovery

Dark Matter

Monojet searches: probe m_{DM} up to 800 GeV and mediator masses up to 2.5 TeV

Searches with HF quarks: sensitivity to m_{med} by a factor from 3 to 8

Searches via Interactions with EW bosons For example, in mono-Z searches, masses up to a factor of three larger than current limits ould be probed

Physics potential @ HL-LH

- More powerful detectors (new trackers, new triggers, new timing info..)
- Much higher luminosity

Monojet searches: probe m_{DM} up to 800 GeV and mediator masses up to 2.5 TeV

Searches with HF quarks: sensitivity to m_{med} by a factor from 3 to 8

Searches via Interactions with EW bosons For example, in mono-Z searches, masses up to a factor of three larger than current limits ould be probed

Conclusions

Continued stream of LHC run 2 publications

- Precise measurements in all areas
 - Including measurements of rare processes and in extreme phase spaces
 Including heavy flavors and heavy ion collisions
- New physics searches in multi-TeV range
- And indirect limits from EFT fits
- LHC can probe many of the current puzzles

 Probe NP related to heavy flavor anomalies
 Searches for dark matter ...
- Run 3 will more than double the dataset
 At 13.6 TeV

List of Results

- All ATLAS Physics Analysis Public Results appear at
 - https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ResultswithData2018
- All CMS Physics Analysis Summaries appear at:
 - <u>http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/CMS/index.html</u>
- ATLAS Physics Briefings at
 - https://atlas.cern/updates/briefing
- CMS Physics Briefings at:
 - <u>https://cms.cern/tags/physics-briefing</u>