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Where are we?

.
+ PDFs ¥V Sy

+ Partonic processes

= T :
O0 g 20 OOy O TOOIT
+ Parton showers T s 0000 4

+ Hadrowg#ation ! ° dy



Recall: LO and higher order amplitudes

Calculate in D=4-2¢ dimensions

GBS %{
NLO o /WW< _
e, e’ —_— e
| loop | extra parton
NNLO 50 M % %W
N e’ N e ——
2 loop | loop + 2 extra partons

| extra parton

3



After G. Zanderighi
Iggs production cross section in perturbation theory

Leading order prediction based on 1 simple diagram:




NNNLO Higgs production

* / million (3-loop) Feynman diagrams

alas

e Each needs powertul algebra, and requires
- advanced mathematical method




FORM computer algebra program

« Extraordinarily powerful, vital for collider physics calculations
— developed by Jos Vermaseren@Nikhef over 30 years, written in C
— Successor to Veltman’s Schoonschip programme
— Now open source, various contributors




Perturbative orders Higgs production cross section

Measurement by ATLAS and CMS

|

- 20

1.5

ysons in the LHC




Modern methods for loop integrals




Feynman parameters

+ Standard one-loop master formula in DimReg

d™l 1 > i/ 2 ,L(s—n/2) g
/ (27)™ [I2 — M2 + 4¢]s = (27)n =) I'(s) (M — i€) /

Notice the Gamma functions..

+ To use it, need an expression with 1 denominator. Great trick by Feynman:

1 /1 1
dx
AB 0 zA + (1 — x)B]?

Full generalization

1 _ TI(ai+oa+- +ar)
AT AT AT = T(ay) Nloa) - <ar>
1 @Sl dounss I S r—15(1 — = By Tk mi
0 [:ClAl 3l CEQAQ 0 oo .TTAT}

9



Feynman parameter example

p+k

+ (Consider self-energy integral in scalar 453 theory C
+ Loop integral p P

k

/ d"k /d / d"k 1
X
(2m)" [k mQ][kﬂo —m?] " [k? + 2zp - k + xp? — m?]?

Can do the k-integral now, after completing the square (k" = k + xp), using the
standard formula

+ Result

in™2 (2 —n/2) [? D e e
Gy Ty ol -

+ Dimensional regularisation n = 4 — 2¢

10



Mellin Barnes representation

But for some integrals one would like to do the opposite, and factorize the expression

(X jY)/\ = 2#1;(A) /_ +: el e ) XA+1y—z tl
With contour swinging between two series of poles A AfojA — Re
Contour can be closed either to right or left |

E.g. for A = 1 write the left hand side as Z Xiil }

Close contour on right, so that result mvolves sum of residues of I'(— z) at
z=0,1.2,..

Use that residue at z = n equals ( — )"/n!, and identity follows

MB representation can really help with computing difficult integrals

11



Double box

A breakthrough case was the double box integral, computed by Smirnov in 1999

P1 o @ o P3

P2 ® o ® P4

K(x,e) = Ky(x,e)+ Ky(z,€) + o(e)

4 Sz 5 5 5\ 1

KOt($7€) = —6—4—|— 3 —(QIH SU—§7T)
2 Ll 65 Lo 4 88 29

—(glm?’aﬂ—?7T211r1.213—gg“(i3)>E—I—511r14313+67r21r12:1:—gc(S)hqav—l—%?T4

62
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4

4

Differential equations for loops

Method to compute loop diagrams as solutions to DE, with “simple” boundary

conditions P ) Ps
. «
Example: 1-loop massless box integral v |
>
I = lu26 /dnk 1 k +pi +p;
bor T i/ 2pp k2(k +p1)%(k + p1 + p2)%(k + p1 + p2 + p3)? . .

Integral can be done using 3 Feynman parameters. Result
Tros = B [ 5 ((=8)™ + (=)™) = 7° — In%(s/1) + O(e)

st e

Define family of box integrals

$=2p1-p2, t=2p1-p3

£ MQG 1

Galaga aqg — . /dnk
o = el ) IR+ B O+ b+ p2) I (R + p1 + pa + ps))

.€. 1, = G114

13



IBP identities

+ |IBP = Integration By Parts

+ Can derive recursion relations for G, ,, , .. USINg

= /de' J g'u 2 2 : 2 2
okt > [k2]o1[(k + p1)2]22[(k + p1 + p2)2]23[(k + p1 + p2 + p3)?]%e
+ which leads to

(D—al—2a2 —a3 —a4) Gu1 2304 — t Ga1 203,441 — A1 Ga141,02—1,03 04
— a3 G 21034104 — 94 G120 10324+1 = 0

and a few others

+ There are then a few “Master integrals” from which the rest of the family can be

derived
Ji— G o i = Gagies. « dis = (Gl

Notice that the first two are bubble integrals

14



Differential equation

Define differential operator

ds = (B1p1 + Bap2 + B3p3)0p, =

Using IBP’s one can derive
s f(s,t,€) = Ag(s, t,€)f(s,t,€)

Choose a different (canonical, Henn) basis

And use x = /s with 9, = (—s°/1)d, to derive

3 a b 5 -1 0
da=efi-rigliwe e (00

Note that the rhs is proportional to €!

Such a basis can in very many cases be found
15

0 0
As = 0 _g
_2(1-2¢)  2(1-2€)

st(s—+t) s2(s+t)

g1 =c(—s)tGor 02 = c(—s)(1
2 = c(—s)sGyop0 = c(—s)¢(1
g3 = ce(

0 U -0 g
0 b= 0 0 O
—1 —2 =

0

0
RS e
s(s+t)

—2€)Go 10,1
—2€)G1,0,1,0
—5)stG1,1,11



Solution to differential equation

The canonical basis is the best one to solve the differential equation

. : =)l =)
Bubble integrals: G020 = S oe T — 2

)
I'(1+¢)T%(1—¢€)
et(—t)¢ T'(1 — 2e)

Go102 =

.e. €1, &> known

Now write the g’s as Laurent seriesin€: =Y €"§® (x)

and substitute into differential equation
Because of the € factor on the right, one has the structure
i =1
Fidst = Flgy 2
Special kinematic values for the master integrals are the boundary conditions.

Now integrate per i-value, to reconstruct the box integral g5 to arbitrary power of € as
terated integrals

Highly powerful method, much used by the loop specialists

16



+

lterated integrals

Solutions contain iterated integrals

The take the general form

G i dis
G(al,ag,...,an;z):/ /
o t1—a1 Jg t2—ae

“Goncharov” or multiple polylogarithms (MPL's)

MPL's were recently found to obey interesting properties
shuffle algebra (A ® A — A)
Hopf algebra with co-product (A - A ® A)
A bit formal, but very useful to find lots of identities among these functions

1177



Special function relations can really help

+ Example of such relations

2
Ré‘)/‘/L(ul,UQ,u:g) =
]. 2 1 Uo — ]_
G(liz’ 112’1’ 11,2;1) — ) —QIH(Z)Li3(2)+%1n2(2’)L12(Z) ﬂﬂ- G (1 Ay ’U,17 ]
+ 55 In*(2) — ¢(3) In(2) — 3¢(4) | el ug — 1

+ Remarkable benefit (2-loop
hexagon function)

- First result 17 pages of formulas,
full of MPL’s Bern et al

- After using MPL identities

3

 ta 1
UEAUREADED'S (L4<xr,xi> — 5 Lia (1 5 —))

=

gy AR s
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ON ALL ORDERS
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Predictive power in Quantum Field Theory

+ Observable, computed in perturbation theory

O:cha”—l—Rn

n

+ Finite order: only take lowest few “n”. Then please complete the following checklist

A ais small enough?
4 Is R, small enough ?

[ cndoes it not grow too fast with 72?

+ Here we worry about the last check.
+ Hadronic observable is then convolution of PDFs and partonic cross section

Op = Z bi(1r) ® Oi(1)

[ If any of these steps is a weak link, try to update it

20



Perturbative series in QFT

+ Typical perturbative behavior of observable O, = 1+ a(L?+L+1)+
a is the coupling of the theory (QCD, QED, ..) GOl e Ny R [y
L is some numerically large logarithm
“1" = 12, In(2), anything not-logarithmic
Notice: effective expansion parameter is alL? i.e. a problem when >1!!

Fix: reorganize/resum terms such that

O = (5 ST S S s T A A D
= exp | Lgi(asL)+ga(asl) +asgs(asL) + ... | C(as)
LL constants

N— /

+ suppressed terms

+ Notice the definition of LL, NLL, etc

21



LL, NLL,.. and matching to fixed order

+ Leading-log, next-to-leading log, etc

Schematic overview

: s

O=aob Co +Cias—+...|exp [ oz?L”ch + o L"d,) + a?L"_len + ...
LL,NLL il P = ~
NNLL ) - - & P

X NLL 5

NNLL

Systematic expansion in s in the exponent
v If we can find the coefficients cn, dn, en, Co, C1 etc

How to combine this with an exact NLO or NNLO calculation?

ONLO matched — ONLO T Oresummed e (Oresummed) }expanded to O(ag)

22



Logs of what? First case: double recoil logs

L? = In? (p3. /M%)

Eg. pT of Z-bosons produced in hadron collisions
Z-boson gets pr from recoil agains (soft) gluons
v 1 emission with gluon very soft: divergent

Typical: turn-over at pT around 5 GeV is only explained by resummation, not by any finite order calculation

N
Co

e DO 1994-1996 il

-+ b-space ( Ladmsky-Yuan ) 7-boson
CTEQ4IM g,=0.11 GeV’ g2—0 58 GeV’
g;=-1.5 GeV'’

,,,,, q,-space (Ellis-Veseli)
MRSRI G=0.1 GeV" Q=40 GeV

""""""" b-space (Davi s-Webber-S tirlin
wrdi g1—0(15 GeV® &0 GeV’ 8) gluon

,,,,, Ap;lgcfd-order (0(c))

)
2N
T ‘ [l

I\
S
\‘ [l

~
=)
RE EHrEn

doldp,*BR(Z—ee) (pb/GeYV)
o

X A Nes

\\‘\\\\‘\\\\‘\\\\T\\\\\\

: s gl . R e S e S L
0 5 10 15 20 25 30 35 40 45 50
pA(GeV) 23




~N N~ N NN
N N S KN O

L T L R

o/dp,*BR(Z—ee) (pb/GeV)
A o

Recoil logs

N

24

Resumme.d DQ 1994 1996

b-space (Ladinsky-Y
CTEQ4M g,~0.11 GeV’ g2—0
g,=-1.5 GeV’

----- q,-space (E llls-VeseA
MRSR1 &=0.1 GeV 9 rpim=4-0

---------- b-space ( Davzes-Wel
MRSA g,=0.15 GeV’ g2—0 4 (

i AI; I%cgd-order (O(0o; ) )



Second case: threshold logarithms

=T (1 — Qz) — iy

S

+ Logarithm2 of “energy above threshold Q2"

“Hidden” logs™: have integration variables in arguments

Typical effect: enhancement of cross section

- — @

25



(Quick look at origin of double (“Sudakov™) logs

+ Double logarithms in cross sections are related to IR divergences

1 b §

Phase space integration
o) / &k _p-p ~ O /K dbigbg * / dfqg sin”" Oqg
") @mt pkp ko |
]. p' p'
~ a, (= +In*(K)). g

€

p'+k

26



Benefits of resummation

+ |t can rescue predictive power
- when perturbative series converges poorly

+ Better physics description (small pr e.g., more later)

+ Lessens the renormalization/factorization scale uncertainty,
e.g. the inclusive top quark and Higgs cross section:

27



NNLO-NNLL inclusive tt cross section

Baernreuther, Fiedler, Mitov, Czakon
+ Highly impressive effort
- For precision top physics

- useful for gluon density at large x, and a¢ determination

Czakon, Mitov, Mangano, Rojo

' ' ' fheor}T/_gscalé(s + ;/x'ffj =
eory (scales o o
9 \ CDF and DO, L=8.8ft™" —v— | Scale variation Concurrent uncertainties:
280
g 7 N ' 260 NLO
5 \ o N’}’LO R Scales ~ 3%
° 7 1 240 | ~
\\ [ L pdf (at 68%cl) 2-3%
_ | 220 NLL : ~ Ao
1 Ppbar—ttixa@ NNLO+NNLL\ g NLETEE X, (parametric) 1.5%
/| .
, | MsTweooennLOese) s 200 LL Meop (parametric) ~ 3%
164 166 168 170 172 174 176 178 180 182 © 180 i
o G —
160 NNLO+res =—— || Soft gluon resummation makes a difference
140 ; ;
' ' w LHC 8 TeV; m, =173.3 GeV; A=0
Theory (scales + pdf) ; ) top ; ’
300 - CMS dilep%:)r(h 7 Te\% —_— 120 5% -> 3%
ATLAS and CMS, 7TeV ——
ATLAS, 7TeV —e—
CMS dilepton, 8TeV
5 250 |
&
5
S
200 t
PP — tt+X @ NNLO+NNLL
150 Myop=173.3 GeV
MSTW2008NNLO(68c))
6.5 7 7.5 8 8.5
Vs [TeV]

28



Logarithm is again threshold logarithm

v

v

30 NT T°T | I I | I 1l I

8 A A-softy my = 125 GeV |
I LHC 8 TeV
: ~a == e \:
[ ¢ '\.\.\ i
[| —-—- NNLO

5L NNLO-+LL 7
/| — — = NNLO+NLL | el
"| —-—- NNLO+NNLL
|| ——— NNLO+NNNLL

0 Y T | | | | | 1 1 |

0.06 0.1 02 0.3 0.5 1 2

>

N3LL resummation for Higgs production

For inverse Mellin transform, employ both Minimal Prescription and Borel prescription

Nice progression, especially with exponentiated constants

Higgs cross section: gluon fusion

MR / My

Code: ResHiggs and ggHigs

Bonvini, Marzani

Higgs cross section: gluon fusion

T

I I
A-soft;
3 0o exponentiated

| e

T
my = 125 GeV |
LHC 8 TeV

[| —-—- NNLO

- NNLO+LL b
B — — - NNLO+NLL (B
| —-—- NNLO+NNLL
[| —— NNLO-+NNNLL

0 I | o | I | | | |

0.06 0.1 02 03 0.5 1 2 3

29
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How to resum?

+ There are many ways, depending on
the observable

the logarithm

the resummer

+ Here we take as key notions
approximations in kinematic limits

factorization

30



+

Resummation 101

Cross section for n extra gluons

Phase space measure  Squared matrix element

1
O-(n) B 2_3/d(1)n+1(P7 k17"'7kn) X ‘M(P7 kl""7kn)‘2

When emissions are soft, can factorize phase space measure and matrix element [eikonal
approximation]

el
d(I)n_H(P, ki,.. ,k‘n) — d(I)(P) X (d(I)l(k)) ﬁ

Sum over all orders
MP e, )2 — [M(P) X (M emission (B))"

> o(n) =a(0) x exp | / 4D ()| M emssion (k) 2]

n

Incorporate Theta or Delta functions in space space

- but these must factorize similarly, or they cannot go into exponent

31



Phase space in resummation

+ Kinematic condition expresses “z” in terms of gluon energies

— = =
—0?2—2P K — K2 @ 2K
S 5(1 S ; \/E)
or conservation of transverse momentum .

*(Qr — > _p7)

+ Transform (e.g. Laplace/Mellin or Fourier) factorizes the phase space
/OO dw e_wNé(w — Z wi) = H exp(—w; N) /d2QT e QT 52(QT = Zp?’p) = H P
0 i i i i

+ So can go into exponent

Za(n) = o(0) x exp [/d@l(k)\./\/ll emission (§)|* (exp(—w N) — 1)

n

Large logs: In(N) or In(bQ)

50



Resummaton from factorization

+ \ery generically, if a quantity factorizes, one can resum it

First a toy example: product of two function, with x and p in common:

C(a,b,z) = f(a,z,u) X g(b, z, )
Take logarithm
InC(a,b,z) =1n f(a,z, u) + Ing(b,z, p)

Take derivative w.r.t. |
d d

ey} = ] =
i n f(a,z, p) i ng(b,z, u) = y(z, p)
Note: y can only depend on common variables
Solve
Hdy :
f(a,x,,u) — f(aaxmuO) exXp [_/ 77(:67/1)]
Ko

Resummation!

33



Resummaton and factorization

+ Factorization is actually separation of degrees of freedom
Renormalization; factorizes UV modes into Z-factor

Glgs, A,p) = Z<%,9R(N)> X GR (QR(M% %)

Evolution equation (here RG equation)

d d

g 1G9, 2) =~ 102 (2 9m(1)) = ~(9m (1)

Solving = resumming

34



Factorization and resummation for Drell-Yan

O(N) o A(Na My gl)A(Na M, 52)S(N7 Iy 517 fZ)H(:u)
+ Near threshold, cross section is equivalent to product of 4 well-defined functions
+ Demand independence of

renormalization scale

gauge dependence parameter ¢

v find exponent of double logarithm

d d d
0= -0 (N) = &1 -0 (N) = Ea o (N)

A:exp[/‘%/%.]

35
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Factorization for threshold resummation

Ai(N): initial state soft+collinear radiation effects

rea|I+2vir[:uaI o(N) = 3" 6s(N)¢; (N) [Ai(N)Aj(N)Sm(N) Hz‘j]
Asnin<n v f

Sii(N): soft, non-collinear radiation effects

as"in N

H: hard function, no soft and collinear effects

Cr
27Tb0)\

_2 S
:CF 1n2N—|—..]
7T

Ay(N) = exp | In N 20+ (1 —2)\) In(1 —2A)}+..]

= exp

36



Threshold resummed Drell-Yan/Higgs cross section

Sterman; Catani, Trentadue

do.resum dN N
— s N
a— /C N ()
1 N—1 @IS
7 —1 dis
My = o =
o(N) exp{ Jide % {/ 2 A (i)

T

+D(as((1 - CL’)Q))H x (1 + &S(Qz)ﬁ +..)

Note: functions in exponent only depend on as

57



Resummaton and factorization

+Type of factorization dictates resummation
small x [In(x)] — kr factorization

v Regge, High-Energy,..

large x [In?(1-x)] — near-threshold factorization

Introduction to

v Threshold, Sudakov Soft-Collinear
Effective
+ Systematic approach in Soft Collinear Effective Theory [SCET] 1hecry
. Bauer, Fleming, Pirjol, Stewart, ..
pOWGﬁUl framework, with many results Beneke, Chapovsky, Diehl, Feldmann
Becher

38



Background: the eikonal approximation



Kikonal optics: rays

Can describe formation of images/eikons
wavelength << size of scatterer

Cannot describe diffraction, polarization etc
these are wave phenomena

In quantum field theory the eikonal approximation reveals more




Kikonal approximation in QED

+ Charged particle emits soft photon
Propagator: expand numerator & denominator in soft momentum, keep lowest order

Vertex: expand in soft momentum, keep lowest order

k > H
p+k P

(p+ k) +p*  2p*

2p - k + k2 -k

41



Basics of eikonal approximation in QED

Ei, i Ko, po Ky bin
> p
Exact: 1 (2p + Ko + Ky)H ... 1 (2p + Kn)li™, Ki= En:km-
" (p+ Ky)? (p+ Kn)? ’ P
1 1
Approx: 2pHt . 2pHn
Eikonal 1 1 1

= - =
|dent|ty: p - (kl o kQ)p 0 kg p - (kl e kg)p c ]431 D - klp - kQ

K
Sum over H L
all perm’s: S o

Independent, uncorrelated emissions, Poisson process

42



Kikonal approximation: no dependence on emitter spin

Emitter spin becomes irrelevant in eikonal approximation
p+k

Fermion p -
: p+ k), .

Approximate, and use Dirac equation  pu(p) =0

Result:

pH
g (M u(p)) X R

Two things have happened

v No sign of emitter spin anymore

v Coupling of photon proportional to p+ !

Decoupling again of emission and emitter

43



Kikonal exponentiation

In the eikonal approximation, suddenly we see very interesting patterns.

One loop vertex correction, in eikonal approximation
p

o feslo

Two loop vertex correction, in eikonal approximation

ko 1 (e 1 DoE 2
W@é W{ A“z(/”k2<p-k><p-k>>

Exponential series! A really beautiful result

Yennie, Frautschi, Suura
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(QCD exponentiation: webs

Exp [ Cr <§ + (5@@)@ - (“loaer) €+ ]

+ Not immediately generalizable to QCD, seemingly

Vertices terms have color charges, which don’t commute

Still, an exponentiation theorem holds Webs

Z]:DC’D = exp ZC_}wi
D | g ]

Gatheral; Frenkel, Taylor; Sterman
EL, Stavenga, White

Gardi, EL, Stavenga, White
+ (Generalized to multiple colored external lines Mitov. Sterman, Sung

For N(N..)LL resummation for jet cross sections, e.g.
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Solt logarithms at next-to-leading power

+ (General soft expansion for 2—1 processes

o’e 2n—1
do g\ ™ L o GRS
S E e E (—1)
dz ( ™ ) {Cnm 1—z

+ {9 1og™(1 —z)—l—...}
_|_

+ First term resummed well understood (NNNLL etc)
+ NLP logarithms log(1 — x)

- also exhibit all-order patterns. Leading logarithmic (only..) resummation now achieved
for a number of reacions

Beneke, Broggio, Garny, Jaskiewicz, Vernazza,
Szafron, Wang "18

200, C 20.Cw looc N Bahjat-Abbas, Bonocore, EL, Magnea, Sinninghe-
C S log2 (N ) 1+ s F 106 Damsté, Vernazza, White ‘19
s N

599 (Q?) exp {

Moult, Stewart, Vita, Xhu ‘18
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(QCD precision quest

Development and applications of many new methods for high order partonic cross sections
Differential equations, Mellin-Barnes, Loop-tree duality, finite field methods, unitarity methods
(Isolate IR divergences in radiative contributions)

Many specialized computer codes, numerical or algebraic (FORM e.g.)

Resum to all orders what you can, and match to exact finite orders

Improvement of PDFs and their uncertainty
New methods, better tools, better input data.

Delicate interplay of measurements and theory

Improve the parton showers
Beyond leading logarithmic

Match to finite order calculations

[Improve the hadronization models, jet algorithms etc]

47



Summary

It is possible to use perturbation theory for QCD@LHC, thanks to asymptotic freedom

So can use LHC as precision machine, to seek small deviations from Standard Model
Make every link in the chain (PDF’s, partonic cross section, parton showers) as precise as possible
Much, much effort and ingenuity in computing higher order corrections, including automization

Confront precise pQCD description with many different measurements to stress-test the Standard Model

Include also electroweak corrections..

Theorists and experimenters both on Team Precision!
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