

Highlights from Gran Sasso

Prof. Antonio Zoccoli Istituto Nazionale di Fisica Nucleare Università degli Studi di Bologna

External Buildings

Undergound Site

Why are we going Undeground?

Why don't we see stars during the day?

To see a very weak signal (light of a star) we need to avoid interference from other light sources (like the sun).

To study rare nuclear events, we need an environment in which all the possible interferences are minimized.

Why are we going Undeground?

Every second, at sea level, something around 200 particles (muons) per m² will interact with Earth.

In this conditions, Cosmic Rays become an unavoidable "noise" for every nuclear detector placed on the Earth surface.

Going underground we strongly suppress such interferences produced by Cosmic Rays on our apparatus.

LNGS early history

- 1979: proposal by A. Zichichi to Italian Parliament
- 1982: Approval of LNGS construction
- 1987: Construction completed
- 1989: Start data taking of first large experiment (MACRO)
- 1991: GALLEX

.

LNGS characteristics

- The largest and most important underground laboratory in operation
- Shielded by 1400 m (3800 m.w.e.) of rock (Gran Sasso Mountains)
- Muon flux reduction respect to sea level **10**⁶
- Easy access directly from the A24 highway

An International Lab

TOTAL USERS: N. 981 ITALIAN USERS: N. 417 FOREIGN USERS: N. 564

3 main experimental halls 100 m long, 20 m width and 18 m hight

Many small tunnels for lab facilities and small experiments

Actually there are 22 experiments in data taking or under construction

The most sensitive laboratory for very low radioactivity measurements

INFN

LNGS experiments

Fundamental physics

- > Neutrino astrophysics
 - Solar neutrinos
 - Geo-neutrinos
 - Supernova neutrinos

> Nuclear astrophysics

• Astrophysical nuclear processes

> Neutrino properties

- Neutrinoless Double Beta Decay
- Search for relic neutrinos

Dark Matter

• Direct interaction of WIMPs with Nuclei

..... but also

> Test on quantum mechanics

- Study on Planck invariance
- Electron decay

Radiobiology

- Biological effects of low radioactive environment
- Geophysics
 - Earthquacke monitoring and study
 - Analysis of water resources
- Ultra Trace elemental analysis
 - Low radioactivity tests and measurements
 - Cultural Heritage analysis
 - Advanced additive manufacturing

Rare events

- **Background**
 - **>**Radiopurity
 - ➢Screening

Neutrino AstroPhysics

Every second our fingers are crossed by around **60 Billions** of neutrinos Produced by many different sources

Neutrini Solari

Neutrini Fossili dal Big Bang

Neutrini Artificiali da acceleratori

Neutrini da interazione di raggi cosmici in atmosfera

Neutrini prodotti dal nostro pianeta

Neutrini da esplosioni di SuperNova

Neutrini Astrofisici (Active Galactic Nucleus, Gamma Ray Bursts, etc...)

Neutrino Astrophysics Experiments

BOREXINO

solar neutrinos geo-neutrinos SN neutrinos

LVD SN neutrinos

• LUNA Nuclear Astophysics

Borexino results

Reconstruction of the Solar Neutrino Spectrum

Cocconi Prize 2021

(INFN

Supernovae neutrinos

The most powerful scintillator telescope

Main features:

Liquid Scintillator: CnH2n+2 <n>=9.6 + 1g/l PPO + 0.03g/l POPOP, p=0.8 g/cm³ total 1 kt

840 stainless steel, 1.5 m³, counters

(FEU49b or FEU125) 15 cm diameter

total 0.85 kt

2520 PMTs

Nuclear Astrophysics - LUNA400

Neutrinoless Double Beta Decay

Isotope selection

From the Table of Isotopes

- 35 isotopes with double beta decay transitions
- 9 promising for sensitive measurements
- most promising candidates: $Q_{\beta\beta} > 2-3$ MeV
- isotope enrichments are needed

Considering a calorimetric approach (Source == Detector)

- isotope enrichments are needed
- very clean materials have to be identified

E. Previtali

Background interferences

It is necessary to strongly reduce background events:

- Cosmic Rays
- Radioactivity

Guo et al., Chinese Physics C45 (2021) 025001, arXiv:2007.15

Possible Calorimetric Approaches

Present and Future experiments

	Experiment	lsotope	Status	Laboratory	Moles of isotope	lsotopic abundance	B (events/kg _{is} ₀/keV/yr)	Fiducial isotope mass (kg)	Active fraction (%)	Eficiency	FWHM (keV)
High-purity Ge detectors	GERDA-II	⁷⁶ Ge	completed	LNGS	450	0.87	6.00E-04	30	88	0.7189	3.29
	MJD	⁷⁶ Ge	completed	SURF	240	0.88	4.74E-03	16	90	0.8099	2.585
	LEGEND-200	⁷⁶ Ge	construction		2400	0.9	2.10E-04	166	91	0.819	2.585
	LEGEND-1000	⁷⁶ Ge	proposed		12000	0.91	1.00E-05	839	92	0.828	2.585
Xenon TPC's	EXO-200	¹³⁶ Xe	completed	WIPP	1200	0.81	1.99E-03	75	46	0.84	72.85
	nEXO	¹³⁶ Xe	proposed	SNOLAB	34000	0.9	2.10E-06	2959	64	0.66	47
	NEXT-100	¹³⁶ Xe	construction	LSC	640	0.9	4.90E-04	77	88	0.3724	23.5
	NEXT-HD	¹³⁶ Xe	proposed		7400	0.9	5.80E-06	956	95	0.3916	18.095
	PandaX-III-200	¹³⁶ Xe	construction	CJPL	1300	0.9	1.20E-04	136	77	0.481	72.85
	LZ-nat	¹³⁶ Xe	construction	SURF	4700	0.09	1.22E-03	90	14	0.8	58.75
	LZ-enr	¹³⁶ Xe	proposed	SURF	46000	0.9	1.20E-04	876	14	0.8	58.75
	Darwin	¹³⁶ Xe	proposed		27000	0.09	4.10E-05	477	13	0.9	47
Large liquid	KLZ-400	¹³⁶ Xe	completed	Kamioka	2500	0.91	3.80E-04	150	44	0.97	267.9
scintillators	KLZ-800	¹³⁶ Xe	data taking	Kamioka	5000	0.91	5.30E-05	394	58	0.97	267.9
	KL2Z	¹³⁶ Xe	proposed	Kamioka	6700	0.91	2.20E-05	729	80	0.97	141
	SNO+I	¹³⁰ Te	construction	SNOLAB	10000	0.348	3.00E-04	272	20	0.97	188
	SNO+II	¹³⁰ Te	proposed	SNOLAB	51000	0.348	3.00E-04	1873	27	0.97	133.95
Cryogenic calorimeters	CUORE	¹³⁰ Te	data taking	LNGS	1585	0.348	5.38E-02	206	100	0.8096	7.52
	CUPID-0	⁸² Se	completed	LNGS	62	0.96	5.95E-03	5	100	0.6966	19.975
	CUPID-Mo	¹⁰⁰ Mo	completed	LSM	23	0.97	7.82E-03	2.3	100	0.6916	7.52
	CROSS	¹⁰⁰ Mo	construction	LSC	48	0.96	1.71E-02	5	100	0.675	4.935
	CUPID	¹⁰⁰ Mo	proposed	LNGS	2500	0.96	1.70E-04	250	100	0.711	4.935
	AMORE	¹⁰⁰ Mo	proposed	Yemilab	1100	0.96	1.70E-04	110	100	0.7462	4.935
Tracking	NEMO-3	¹⁰⁰ Mo	completed	LSM	690	0.9	2.18E-03	69	100	0.11	347.8
calorimeters	SuperNEMO-D	⁸² Se	construction	LSM	850	0.9	1.10E-04	70	100	0.28	195.05
	SuperNEMO	⁸² Se	proposed	LSM	1200	0.9	3.20E-05	98	100	0.28	169.2

INFN

Double beta decay experiments

INFN

Gerda Results

GERDA experiment operates in a real **0 background conditions**

High purity germanium diodes immersed in LAr

- $\Delta E < 3$ Kev FWHM @ Q $\beta\beta$
- Pulse shape analysis: multi/single site vs.
- anticoincidence with LAr
 - scintillating fibers (WLS) coupled to SIPMS
- PMT above and below the detector

CUORE

Largest cryogenic particle detector ever realized

ÍNFŃ

Capri, September 12, 2022

CUORE/CUPID

- CUORE cryostat: most powerful cryostat ever realized
- Tens of ton of materials cooled at 10 mK
- Cryogenic detectors are **reliable**

CUPID detector

- Scintillating crystals and light detectors operated @ 10 mK
- Grown from **various ββ emitters** (**multi-isotope approach**)
- Excellent energy resolution $@Q_{\beta\beta}$ (<1%)
- Possibility to high $Q_{\beta\beta}$ (3 MeV) for ⁸²Se and ¹⁰⁰Mo
- $LY_{\alpha} \neq LY_{\beta/\gamma} \rightarrow Particle ID$
- $LShape_{\alpha} \neq LShape_{\beta/\gamma} \rightarrow Particle ID$
- $HShape_{\alpha} \neq HShape_{\beta/\gamma} \rightarrow Particle ID$

Cosmological studies @ LNGS

Dark Matter Searches

...large part of our Universe is completely unknown...

Cryogenic Liquids XENON Dark Side

Bolometers CRESST

Ultrapure Scintillator DAMA/LIBRA SABRE

Dual Phase TPC

Dual Phase TPC

Xenon TPC

Figure in courtesy: L. Althüser

Reduction of ER-induced background up to 99.75% at 50% NR acceptance

Xenon @ LNGS

Dark Matter Searches

Possible future experiments @ LNGS

Nuclear Astrophysics - LUNA-MV @ LNGS

Maximum beam intensity on target at different terminal voltage

lon specie	Terminal Voltage				
ion specie	0.3 MV – 0.5 MV	0.5 MV - 3.5 MV			
¹ H+	500 µA	1000 µA			
⁴ He+	300 µA	500 µA			
¹² C+	100 µA	150 μA			
¹² C+2	60 µA	100 µA			
Number of Beam L	ines	2			
Beam time / year		7400h (308d)			
Max. admitted neut	tron flux at target	2000 n/s			
Neutron level outsi	de shielding	Below natural underground neutron flux at LNGS			

Literature reference: Sen, A., NIM B https://doi.org/10.1016/j.nimb.2018.09.016

LUNA-MV mainly funded with a national grants

Double Beta Decay : Next Generation Experiments

CUPID

KamLAND-ZEN

INFŃ

Capit, September 12, 2022

LEGEND-200

- Natural evolution of the GERDA principle
- Combines the best of Gerda and MJD
 - ► from GERDA:
 - detector configuration
 - infrastructure@ LNGS
 - system improvements
 - ► from MJD
 - selection of radio-pure materials
 - electronics
 - low threshold1
- ⁷⁶Ge:
 - ► 35 kg from GERDA
 - ► 30 kg from MJD
 - 140 kg new materials
- New type of detector, already tested in GERDA
 - ICPC m > 2 kg (0.7-0.9 kg previously)
 - same energy resolution and PSD capability

Double Beta Decay Experiments

Meeting between North American and European funding agencies

F. Prevital

- Selection of future DBD experiments

 Experimental sensitivities
 Budget requested for each experiment
 International collaborations
- Selection of possible undegroud laboratories SNOLab/SURF – North America LNGS - Europe

	T _{1/2} (10 ²	²⁸ years)	m _{ββ} (meV) 3	δ Discovery	
	Excl. Sens.	3σ Discovery	Median	Range	
CUPID	0.14	0.10	15	12 to 20	Prosecutor of CUORE
LEGEND-1k	1.60	1.30	12	9 to 21	Prosecutor of GERDA
nEXO	1.35	0.74	11	7 to 32	

Dark Matter search experiments

A rich experimental program is actually in preparation:

- XENONnT
- Dark Side 20k
- COSINUS
- SABRE
- LIME/CYGNO
- •

Specific LNGS facilities are under preparation

- NOA Clean Room for detector assembly
- New cryogenic plant for large LN production
- Screening facility for material selection

Medium/Long term activities on Dark Matter experiments are ongoing Some LoIs for future experiments (Darwin, ...) were received by LNGS A 5/10 years plan on Dark Matter experiments is practically well established

Dark Matter search – Darkside 20k

A 20-tonnes fiducial argon detector filled with underground argon

TPC acrylic vessel surrounded by AAr + Gd-loaded acrylic shell as a neutron veto

21 m2 of Cryogenic Silicon based Photo-Multipliers

LOW RADIOACTIVITY ARGON

URANIA

- Procurement of 50 tonnes of UAr from same Colorado source as for DS-50
- Extraction of 250 kg/day, with 99.9% purity
- UAr transported to Sardinia for final chemical purification at Aria

ARIA

- Big cryogenic distillation column in Seruci, Sardinia
- Final chemical purification of the UAr
- Can process O(1 tonne/day) with 10³ reduction of all chemical impurities
- Ultimate goal is to isotopically separate ³⁹Ar from ⁴⁰Ar (at the rate of 10 kg/day in Seruci-I)

Cutting Edge Technologies

Advanced Additive Manufacturing Copper 3D printing

Ultra-Trace elemental and isotopical analysis

Cultural Heritage Environmetal Studies High Purity Material

Quantum Technology Quantum Computing Quantum Communication

Conclusions

- @LNGS a large number of experiments are actually taking data or are under construction
- LNGS international community involve many country around the world and large number of researchers
- LNGS play a leading role in many different field of researches (DBD, DM, NA ...)
- Future scientific programs are under discussion at international level:

Prof. Enrico "Puccio" Bellotti 1940 - 2021 1st director of LNGS President of Astroparticle Physics committee of INFN Great scientist and great expert in DBD

Neutrino Oscillation

The CNGS beam along its five years of operation $2008 \div 2012$

Neutrino Oscillation

The First v_{τ} Candidate in the brick daughter $\tau \rightarrow \rho^{-} \nu_{\tau}$ $\rho^{-} \rightarrow \pi^{0} \pi^{-}$ $\pi^0 \rightarrow \gamma \gamma$

Sensitivities: a different view

Gerda/Legend

Novel HPGe detectors allow for efficient PID

Thanks Prof. S. Shoenert

LUNA400: what can still be done

- $\frac{14N(p,\gamma)^{15}O}{15O}$ to decrease the uncertainty at solar temperature;
- $\frac{{}^{16}O(p,\gamma){}^{17}F}{}$ to determine the ${}^{16}O/{}^{17}O$ abundance ratio in red giant stars;
- ¹⁹F(p,α)¹⁶O to constrain AGB star nucleosynthesis and to investigate spectroscopy of self-conjugate
 ²⁰Ne nucleus;
- $\frac{{}^{21}Ne(p,\gamma){}^{22}Na}{}$ to determine the production of ${}^{22}Na$ in Novae and Supernovae
- $\frac{^{23}Na(p,\alpha)^{20}Ne}{^{20}Ne}$ to understand the ^{23}Na production during H-burning both in stellar cores and shells;
- $\frac{^{24}Mg(p,\gamma)^{25}AI}{^{25}AI}$ which is crucial to understand MgAI anticorrelation;
- $\frac{2^{7}Al(p,\alpha)^{24}Mg}{p}$ which significantly affects the Mg and Al production;

LUNA400 2022-2024 new program

- ¹⁶O(p,γ)¹⁷F will be done using the solid target beam line setup together with the γ detectors available, only minimal modifications are foreseen;
- ²¹Ne(p,γ)²²Na will be done using the gas target beam line setup together with the γ detectors available, only gas enriched in ²¹Ne is needed;
- $\frac{^{23}Na(p,\alpha)^{20}Ne}{^{27}Al(p,\alpha)^{24}Mg}$ Edinburgh group will develop the α particle detection setup.

