
Introduction
The Kantowski-Sachs metric describe spatially homogeneous anisotropic 
spacetimes with a four-dimensional isometry group whose three-dimensional 
subgroup acts multiply transitively on two-dimensional spherically symmetric 
surfaces.1 

The global structure of these models was described by Collins, who was also 
the first who analyzed the model as a two-dimensional dynamical system for 
the case of perfect fluid with vanishing cosmological constant.2
Motivated by a series of recent papers concerning the analyses of self-
gravitating Skyrme fields in cosmology and Kantowski-Sachs spacetimes3, we 
consider Kantowski-Sachs cosmological models sourced by a Skyrme field and a 
cosmological constant in the framework of General Relativity.

Dynamical system

Introducing the normalization function                  it is possible to define 
new dimensionless variables

This allows to construct a compact state space since the constraint in Eq.(6) 
becomes

Differentiating with respect to the new time variable ′ ≡ (1/D)d/dt and making 
use of the above constraint, the system can be eventually reduced to a three-
dimensional autonomous dynamical system in the new variables Q, Σ, ΩΛ :

Einstein-Skyrme system
The Skyrme model is a generalized nonlinear sigma model. Although not 
involving quarks, it can be regarded as an approximate, low energy effective 
theory of QCD, whose topological soliton solutions can be interpreted as 
baryons (Skyrmions).
The Einstein-Skyrme equations read:

where TSμν is the energy-momentum tensor for the Skyrme field, Gμν is the 
Einstein tensor, Λ is the cosmological constant, G is the Newton constant, K (see 
below) and λ are coupling constants, Fμν and Rμ are, respectively, the field 
strength and a su(2)-valued current for the Skyrme field U which takes values 
on a specific target manifold, the Lie group SU(2).
In what follows, beside the choice of Kantowski-Sachs spacetimes, we consider 
the particular case of a constant radial profile function α=π/2 so that Eq.(2), 
reduced to scalar equation by the hedgehog ansatz, is identically solved.
Eq.(1) can be further manipulated and written in terms of propagation 
equations for the usual volume expansion scalar θ, the shear scalar σ2=(1/2)σμν 

σμν (where σμν is the shear tensor) and the 3-curvature scalar (3)R.
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Discussion
The numerical value of the deceleration parameter q and the analytic behavior 
of the expansion scalar θ at each fixed point can be easily evaluated. Two 
classes of solution are obtained.
The stationary points A, C, F and H are characterized by Q2=1 and Σ2=1; 
this allows to solve in terms of both scale factors A and B to obtain either

depending on the sign of Σ. These solutions are anisotropic and display Kasner-
like behaviours. 
Since the solutions represented by the stationary points B and G have 
vanishing shear they are said to undergo isotropization which, in this context, 
means that the two scale factors are characterized by the same functional 
dependence on time. They are driven by the cosmological constant, the sign of 
the exponent depending on the sign of Q:

thus these solutions are said de Sitter-like solutions. Analogously, for the 
equilibrium set the acceleration parameter is always q=−1.
A bounce in one of the scale factors, say A, is said to occurs at time t* if and 
only if y(t*)=0 and dy/dt (t*) > 0, where y=(1/A) dA/dt.
It can be easily shown that, in this model, a bounce in the scale factor B is 
impossible while a bounce in the scale factor A requires the violation of the 
Strong Energy Condition of the total matter-energy content. 

The system admits six stationary points listed below.

It also displays a normally hyperbolic equilibrium set in the Q= Σ plane, 
defined by:

and three invariant submanifolds characterized by Q=1, Q=−1 and ΩΛ=0 
respectively.

ds2 = −dt2 + A(t)2 dr2 + B(t)2
[
dθ2 + sin θ2dφ2

]
.
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In what follows 8GK→k and we will consider 0<k<1.
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Point Q Σ ΩΛ ΩK ΩS Stability q θ
A −1 −1 0 0 0 Stable (attractor) 2 ∼ t−1

B −1 0 1 0 0 Unstable (repeller) −1 ∼ const.
C −1 1 0 0 0 Unstable (saddle) 2 ∼ t−1

F 1 −1 0 0 0 Unstable (saddle) 2 ∼ t−1

G 1 0 1 0 0 Stable (attractor) −1 ∼ const.
H 1 1 0 0 0 Unstable (repeller) 2 ∼ t−1
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Eventually, making use of the constraints in Eq.(13), the
system is reduce to a three dimensional autonomous dy-
namical system in the new variables Q, Σ, ΩΛ:

Q′ = (Q2 − 1)(1 − k(1 − Q2) + QΣ + Σ2 − 2ΩΛ) (24)

Σ′ = k(1 − Q2)(1 − QΣ) − (1 − Σ2) [1 + Q(Q + Σ)]

+2(1 − QΣ)ΩΛ (25)

Ω′
Λ = 2

[

Q
(

2 − k(1 − Q2)
)

+ Σ(Q + Σ − 1) − 2ΩΛ

]

ΩΛ(26)

The system has a compact phase-space defined as follows:

S = {(Q, Σ, ΩΛ) ∈ R | − 1 ≤ Q ≤ 1,−1 ≤ Σ ≤ 1,

0 ≤ ΩΛ ≤ 1, 0 ≤ 1 − ΩΛ − Σ2 − k(1 − Q2) ≤ 1}

A. Fixed points and stability

The system in Eqs. (24-26) admits eight stationary
points listed in table I.

Sol. Q Σ ΩΛ ΩK ΩS

A −1 −1 0 0 0

B −1 0 1 0 0

C −1 1 0 0 0

D −p −p 1 s q

E p p 1 s q

F 1 −1 0 0 0

G 1 0 1 0 0

H 1 1 0 0 0

Table I: Stationary points for the system in Eq.(24-26) with

p =
q

1+k
2+k

, s = 1
2+k

and q = − 1+2k
2+k

. For the sake of com-

pleteness we have also reported the corresponding values of
ΩK e ΩS.

Their eighenvalues of the Jacobian matrix evaluataed
at the equilibrium points allow to characterize their asta-
bility; the results are listed in II. The point A and G, ly-
ing on the boundary ΩΛ = 0 and ΩΛ = 0 respectively, are
attractors. The former corresponds to... whole the latter
corresponds to a de Sitter spacetime. The points B, ly-
ing on the boundary Q = −1, and the point and H, lying
on the boundary, are repellers. The points C,D, E ,F are
unstable of the saddle typo having at leas two eigenval-
ues with real part of opposite signs. Its worth noticing
that the two points D and E are always placed outside
the physical region S of the phase space.

The system also displays an equilibrium set laying in
the Q = Σ plane and defined by:

−
1 + k

2 + k
< Q <

1 + k

2 + k
, ΩΛ =

1

2
(1 + 2Q2 + k(Q2 − 1))

(27)

Sol. Stability λ1 λ2 λ3

A Stable (attractor) −6 −6 −6

B Unstable (repellor) 4 3 2

C Unstable (saddle) −6 −2 2

D Unstable (saddle) 0 < 0 > 0

E Unstable (saddle) 0 < 0 > 0

F Unstable (saddle) 6 −2 2

G Stable (attractor) −4 −3 −2

H Unstable (repellor) 6 6 6

Table II: Stability of the stationary points in Tab.I. In the
last three columns the sign of the real part of the eigenvalues
for the linearized sistem is represented.

B. Invariant submanifolds

The system in Eqs. (24-26) has three invariant sub-
manifolds characterized by Q = 1, Q = −1 and ΩΛ = 0
respectively.

In submanifold Q = 1, depicted in Fig.1, there are
three equilibrium points corresponding to the points F ,
G and H of table I. Point F ... () Point G.... () Point H...
()
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Figure 1: Invariant submanifold Q = 1.

In the submanifold Q = −1, depicted in Fig.2, there
are three equilibrium points corresponding to the points
A, B and C of table I.

In this submanifold ΩΛ = 0, depicted in Fig.3, there
are four equilibrium points corresponding to the points
A, $, G and H of table I.
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Figure 2: Invariant submanifold Q = −1.
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Figure 3: Invariant submanifold ΩΛ = 0.

IV. EXACT SOLUTIONS AT FIXED POINTS,
BOUNCES, ISOTROPIZATION

It is interesting to test whether the dynamics described
by the Einstein equation for the Kantowski-Sachs met-
ric sourced by a Skyrme field and a cosmological con-
stant, namely system Eqs.(1-3), leads to physically rele-
vant conditions such as isotropization.

A. No bounce

One can notice that subtracting Eq.(2) from Eq.(1)
and assuming that no bounce occurs with respect to the
metric function B, namely, Ḃ != 0, the relation between
the two scale factor is trivial, in a sense:

Ḃ = const.A = B0A, (28)

with Ḃ != 0. Then, eq.(2) only contains the function
B and the autonomous system reduces to two equations
that read:

ẋ =
1

2

[

K

B

(

1 +
λ

2B

)

+ Λ − 3x2 −
1

B

]

(29)

Ḃ = 2Bx. (30)

where

x =
Ḃ

B
, and B = B2. (31)

The system admits two fixed points in the (x,B)-plane,
namely, P1 = (0, f−(Λ, K, λ)) and P2 = (0, f+(Λ, K, λ))
where

f±(Λ, K, λ) =
1 − K ±

√
1 − 2K + K2 − 2KλΛ

2Λ
(32)

For each point, there is always a pair of eigenvalues with
opposite signs (λi,−λi), namely

λ1,2 =

√

−1 + K(2 − K + 2λΛ + S) ± S

KΛ
(33)

with S =
√

(−1 + K)2 − 2KλΛ. By definition B must
be non negative thus, imposing the conditions

B > 0, Λ > 0, K > 0, λ > 0, (34)

one finds that the two fixed points exist in the following
parameters’ ranges:

Λ > 0, 0 < K < 1, 0 < λ <
1 − 2K + K2

2KΛ
, (35)

P1 being neutrally stable, P2 being unstable of saddle
type. Interestingly enough, this analysis reveals a con-
nection between the cosmological constant and the pa-
rameters of the Skyrme model. We can consider the
Skyrme parameters K and λ from flat space-time re-
sults as in [33] from which 8πG K ∼ 6 · 10−39 and
λ ∼ 2 · 10−31m2. By recalling that the cosmological
constant value is Λ ∼ 10−52m−2, one can deduce that
the conditions on the model parameters in Eq.(34) are
fulfilled for such estimations. If we assume an unknown
cosmological constant the same relation imposes a very
weak bound on its value [35]

Thus, we distinguish two behaviours, namely, solutions
in the basin of the stable fixed point and unbounded solu-
tions. Their physical interpretation can be immediately
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Q2 + Ωk = 1, and ΩΛ + Σ2 + k(1−Q2) + Ωs = 1.

B ∼ const. and A ∼ t, or B ∼ t2/3 and A ∼ t−1/3,

B ∼ A ∼ e±
√

Λ
3 t,

S = {(Q,Σ,ΩΛ) ∈ R|− 1 ≤ Q ≤ 1,−1 ≤ Σ ≤ 1, 0 ≤ ΩΛ ≤ 1, 0 ≤ 1−ΩΛ−Σ2−k(1−Q2) ≤ 1}

with compact phase space

(2)
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