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Introduction

The Kantowski-Sachs metric describe spatially homogeneous anisotropic
spacetimes with a four-dimensional isometry group whose three-dimensional
subgroup acts multiply fransitively on two-dimensional spherically symmetric
surfaces.!

ds® = —dt* + A(t)? dr® + B(t)* [df” + sin 0%de?] .

The global structure of these models was described by Collins, who was also
the first who analyzed the model as a two-dimensional dynamical system for
the case of perfect fluid with vanishing cosmological constant.?

Motivated by a series of recent papers concerning the analyses of self-
gravitating Skyrme fields in cosmology and Kantowski-Sachs spacetimes?®, we
consider Kantowski-Sachs cosmological models sourced by a Skyrme field and a
cosmological constant in the framework of General Relativity.

Einstein-Skyrme system

The Skyrme model is a generalized nonlinear sigma model. Although not
involving quarks, it can be regarded as an approximate, low energy effective
theory of QCD, whose topological soliton solutions can be interpreted as
baryons (Skyrmions).

The Einstein-Skyrme equations read:

G+ A g, = 87G Tfy, (1)
A 1%
VA Ry + 5V R Fuf= 0 (2)

where 73, is the energy-momentum tensor for the Skyrme field, G. is the
Einstein tensor, A is the cosmological constant, G is the Newton constant, K (see
below) and A are coupling constants, F., and R, are, respectively, the field
strength and a su(2)-valued current for the Skyrme field U which takes values
on a specific target manifold, the Lie group SU(2).

In what follows, beside the choice of Kantowski-Sachs spacetimes, we consider
the particular case of a constant radial profile function a=m/2 so that Eq.(2),
reduced to scalar equation by the hedgehog ansatz, is identically solved.

Eq.(1) can be further manipulated and written in terms of propagation
equations for the usual volume expansion scalar 0, the shear scalar 0°=(1/2)o*
o (Where o4 is the shear tensor) and the 3-curvature scalar G)R.
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In what follows 8GK—k and we will consider O<k<].

Dynamical system
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new dimensionless variables
0 o2 A OR
L At R e IR PN R

Q ?)D’ 3D2 ; A 3D2 ; k

it is possible to define
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This allows to construct a compact state space since the constraint in Eq.(6)
becomes Q? 0y, =5 -ande SR>l ) G

Differentiating with respect fo the new time variable ' = (1/D)d/dt and making
use of the above constraint, the system can be eventually reduced to a three-
dimensional autonomous dynamical system in the new variables Q, >, 2, :

Q = (@*-1D1-k(1—Q* +QX +X 2 —2Q0,)
Y = k(1-Q°)1-Q%) - (1-2H[1+Q(Q+ )] +2(1 — Q)
Uy = 2[Q(2-k(1-Q))+Z(Q+2-1) — 204 | Qi

with compact phase space

S.={(Q,X,0x) e Rl <@ <11, = TRes S SN O e ST = A o MRS

The system admits six stationary points listed below.

Point | @ | X | Qa | QO | Qg Stability q 0
A -1 -1] 0 0 0 | Stable (attractor) | 2 ~ 1
B = 1 0 0 | Unstable (repeller) | —1 | ~ const
C -1 1 0 0 0 | Unstable (saddle) 2 ~ ¢!
s 1 | =11 0 0 0 | Unstable (saddle) | 2 ~ ¢l
g 1 0 1 0 0 | Stable (attractor) | —1 | ~ const
H 1 1 0 0 0 | Unstable (repeller) | 2 ~ ¢l

It also displays a normally hyperbolic equilibrium set in the O= X plane,
defined by:
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and three invariant submanifolds characterized by QO=1,
respectively.

QO=-1 and 2,4=0

Figure 3: Invariant submanifold Q4 = 0.

Discussion

The numerical value of the deceleration parameter ¢ and the analytic behavior
of the expansion scalar 6 at each fixed point can be easily evaluated. Two
classes of solution are obtained.

The stationary points A, C, F and H are characterized by 0?=1 and 32=1;

this allows to solve in terms of both scale factors A and B to obtain either

B ~const. and A~t, or B~ t2/3  and ANt—1/3,

depending on the sign of 2. These solutions are anisotropic and display Kasner-
like behaviours.

Since the solutions represented by the stationary points B and G have
vanishing shear they are said to undergo isotropization which, in this context,
means that the two scale factors are characterized by the same functional
dependence on time. They are driven by the cosmological constant, the sign of
the exponent depending on the sign of QO:
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thus these solutions are said de Sitter-like solutions. Analogously, for the
equilibrium set the acceleration parameter is always g=-1.

A bounce in one of the scale factors, say A, is said to occurs at time #* if and
only if y(r*)=0 and dy/dt (t*) > 0, where y=(1/A) dA/dt.

It can be easily shown that, in this model, a bounce in the scale factor B is
impossible while a bounce in the scale factor A requires the violation of the
Strong Energy Condition of the fotal matter-energy content.
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