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INTRODUCTION
The process of di-muon production in heavy ion collisions at very high energies is a clean probe of the
quark-gluon deconfinement phase transition. Low-mass dileptons are one of the electromagnetic probes
which reveal the entire thermal evolution of a heavy ion collision. Their invariant mass spectrum is a
direct measurement of the in-medium hadronic spectral function in the vector channel. For invariant
masses below 1 GeV the spectrum is dominated by the ρ meson. Its short lifetime and large coupling to
pions and muons makes it an ideal test particle to sample in-medium changes of its parameters such as
mass, width and leptonic decay constant.

RESULTS

To relate the temperature change to the time evo-
lution of the system, we neglect a possible small
transverse expansion [assume that it is entirely
longitudinal] and use the cooling law

T = T0

(τ0
τ

)v2s
,

where v2s = 1/3 is the square of the sound velocity
for an ideal gas.

Figure 1: Invariant dimuon mass distribution around ρ
peak, with and without thermal evolution.

We show the result for dN/dM compared to the
NA60 data around the ρ peak [for T0 = Tc =
0.197 GeV , Tf = 0.1 GeV ]. The theoretical re-
sult provide an excellent description of the data
around the ρ peak.

Figure 2: Invariant dimoun mass distribution (with and
without thermal evolution) compared to NA60 data.
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FUTURE RESEARCH
1. Including the effects of transverse expan-

sion.

2. Exploring other cooling laws.

3. Analyse the effect of other approximations
for the hadronic spectral function.

4. Verify the agreement with data from other
experiments and other kind of nuclei.
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CONCLUSION
This approach involves as sole inputs the temper-
ature dependence of the rho-meson mass, width
and leptonic coupling. This temperature depen-
dence is obtained from FESR, so that the di-muon
production rate is essentialy a parameter-free pre-
diction.
We have shown that the FESR, being a descrip-
tion entirely in the framework of QCD at finite
temperature, provides support to many-body de-
scriptions of in-medium hadron properties.

FINITE ENERGY QCD SUM RULES (FESR)
The starting point is the light-quark vector cur-
rent correlator, which at T = 0 can be written as

Πµν(q2) = i

∫
d4xeiq·x〈0|T

[
Vµ(x)V†ν(0)

]
|0〉

= (−gµν + qµqν) Π1(q2),

where Vµ(x) = (1/2)[: ū(x)γµu(x)− d̄(x)γµd(x) :]
is the conserved vector current and qµ is the four-
momentum transfer.
Finite Energy Sum Rules (FESR) rely on two pil-
lars, the Operator Product Expansion (OPE) of
current correlators at short distances beyond per-
turbation theory

ΠQCD(q2) = C0Î +
∑
N=0

C2N+2(q2)〈0|Ô2N+2|0〉,

and Cauchy’s theorem in the complex squared
energy s-plane.The theorem allows to relate QCD
information on the circle of certain radius s0 to
hadronic physics on the real positive s-axis.
This leads to the FESR

(−1)N−1C2N 〈O2N 〉 =

8π2
[ ∫ s0

0

ds sN−1
1

π
ImΠHAD(s)

− 1

2πi

∮
C(|s0|)

ds sN−1ΠQCD(s)
]
,

ImΠHAD(s) is related with the hadronic spectral
function and the latter is well approximated by
the Breit-Wigner form

1

π
ImΠHAD(s) =

1

π

1

f2ρ

M3
ρΓρ

(s−M2
ρ )2 +M2

ρΓρ
.

ANALYSIS.
At finite temperature all hadronic parameters be-
come T dependent. The solution from FESR for
all hadronic parameters as a function of T are the
following

Γρ(T ) = Γρ(0)[1− (T/Tc)
3]−1,

Mρ(T ) = Mρ(0)[1− (T/T ∗M )10],

fρ(T ) = fρ(0)[1− 0.3901(T/Tc)
10.75

+ 0.04155(T/Tc)
1.27].

With these solutions we proceed to compute the
dimuon thermal rate in the hadronic phase origi-
nating from ρ decays.

We consider processes where pions annihilate
into ρ’s which in turn decay into dimuons, and
use of vector meson dominance.

dN

d4xd4K
=

α2

48π4

(
1 +

2m2

M2

)(
1− 4m2

π

M2

)
×

√
1− 4m2

M2
e−K0/TR(K,T )ImΠres

0 (M2),

where N is the number of muon pairs per unit of
infinitesimal space-time and energy-momentum
volume, with xµ the space-time coordinate and
Kµ the four-momentum of the muon pairs, α
is the electromagnetic coupling, m is the muon
mass, mπ is the pion mass and M is the dimuon
invariant mass.


