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Introduction.
The behaviour of strongly interacting matter in the presence of
external magnetic fields is a very active research field. It has
a strong impact on experiments at the LHC (peripherial colli-
sions of heavy nuclei at high energy), as well as on astronomi-
cal objects like neutron stars, magnetars, and the early universe.
In addittion, lattice QCD (LQCD) has shown that the critical
temperature for deconfinement/chiral symmetry restoration de-
creases with increasing field strength. This behaviour is dubbed
inverse magnetic catalysis, and it reveals an unexpected, non-
trivial phenomenon.

Given the dual nature of the QCD phase transition, a perti-
nent question is to what extent inverse magnetic catalysis is
due to the mechanisms of either chiral symmetry restoration
and/or of deconfinement. One way to address this question is
to find a relation between deconfinement and chiral symme-
try restoration parameters as a function of the magnetic field.
Since the transition happens for temperatures in the realm of
non-perturbative phenomena, the relation searched for needs to
carry non-perturbative information. A non-perturbative tool that
does not rely on effective models is that of QCD Finite Energy
Sum Rules (FESR).

A key parameter that emerges from this analysis signalling
quark-gluon deconfinement is the squared energy threshold, s0,
above which the hadronic spectral function is well approximated
by perturbative QCD (pQCD).

Here, we present FESR in the axial-vector channel, and in the
presence of an external magnetic field, to explore the relation be-
tween (i) the deconfinement and chiral symmetry restoration pa-
rameters, s0 and 〈q̄q〉, and (ii) obtain the behaviour of the gluon
condensate as a function of the magnetic field intensity at zero
temperature.

Finite Energy QCD Sum Rules with mag-
netic fields.
The charged axial-vector current correlator in the absence of a
magnetic field can be written as

Πµν(q2) = i

∫
d4x eiqx < 0|T (Aµ(x) , A

†
ν(0))|0 >

= (−gµνq2 + qµqν) ΠA(q2) + qµqν Π0(q2), (1)

where Aµ(x) =: d̄(x)γµ γ5u(x) : is the charged axial-vector
current, with s ≡ q2 > 0 the squared energy. Concentrating on
e.g. Π0(q2) and invoking the Operator Product Expansion (OPE)
of current correlators at short distances beyond perturbation the-
ory, one of the two pillars of the QCD sum rule method, one
has

ΠQCD
0 (Q2) = C0 Î +

∑
N=1

C2N (Q2, µ2)

Q2N
〈Ô2N (µ2)〉 , (2)

The Wilson coefficientsCN depend on the Lorentz indexes and
quantum numbers of the currents, and on the local gauge invari-
ant operators Ô2N built from the quark and gluon fields in the
QCD Lagrangian.

The second pillar of the QCD sum rule method is to consider
an integration contour in the complex square energy plane, and
invoke Cauchy’s theorem assuming that QCD can be used on the
circle of radius |s0|. Since there are no further singularities this
leads to the FESR

− 1

2πi

∮
C(|s0|)
ds sN−1ΠQCD

0 (s) =
1

π

∫ s0

0
ds sN−1Im ΠHAD

0 (s), (3)

with N ≥ 1, and ΠQCD

0 (s) given by Eq. (2). In the presence of a
magnetic field, and in the weak field limit eB < s0, the Wilson
coefficients acquire themselves a B-field dependence.
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(
−s
µ2

)
→ 1

4π
ln

(
−s
µ2

)
+
∑
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C
(n)
0

(eB)n

sn

C2N →
∑
m=0

C
(m)
2N

(eB)m

sm
(4)

Substituting Eqs. (4) and (2) into Eq. (3), the first two sum
rules (N = 1, 2) become

0 =
1

π

∫ s0

0
ds ImΠHAD

0 (s)− 1

4π
s0 + C

(1)
0 (eB) , (5)

−C(0)
4 〈O4〉 + C

(1)
2 (eB)〈O2〉 =

1

π

∫ s0

0
ds s Im ΠHAD

0 (s)

− 1

8π
s2

0 + C
(2)
0 (eB)2. (6)

S0 and C4〈O4〉 from FESR.

Hadronic Sector.
The axial-vector current in the presence of a magnetic field can
be interpolated by the charged pion current

Aµ = −fπDµπ+ = −fπ(∂µ − ieAµ)π+, (7)

where fπ is the pion decay constant, π+ the pion field, and
Aµ = (B/2)(0,−y, x, 0) the vector potential in the symmetric
gauge. Therefore, the axial-vector correlator in the hadronic sec-
tor can be written as

ΠHAD
0 (q2) = if2

πG̃π(q2), (8)

where G̃π(q2) is the charged pion propagator in presence of
magentic fields, when it is expressed in terms of a sum over
Landau levels and setting q2

⊥ = 0

ΠHAD
0 (q2

‖ = s) = −2f2
π

∞∑
l=0

(−1)l

s− (2l + 1)eB
. (9)

The imaginary part of Eq. (9) in the weak field limit eB < s0
is given by

ImΠHAD
0 (s) = f2

ππδ(s− eB). (10)

Substituting Eq. (10) into the QCD sum rules Eqs. (5)-(6) gives

0 = f2
π −

1

4π
s0 + C

(1)
0 (eB)

−C4〈O4〉 = f2
π(eB)− 1

8π
s2

0 + C
(2)
0 (eB)2. (11)

pQCD Sector.

To perform the perturbative calculation of the coefficients C(1)
0

and C(2)
0 we use the weak field expansion of the quark propaga-

tor in the presence of a constant magnetic field, and in the chiral
limit, up to order O(B2)

iSB(k) = i
6k
k2
− (eqB)

γ1γ2(γ · k)‖
k4

− 2i(eqB)2

[
k2
⊥(γ · k)‖ − k2

‖(γ · k)⊥
]

k8
, (12)

Figure 1

The pQCD contribution to the axial-vector current correlator
in the presence of a magnetic field is depicted in Fig. 1, where
we also define the kinematics. The thick internal lines represent
the full quark propagators in the magnetic field background.

Figure 2

To first order in eqB only one of the two quark propagators
carries the magnetic effects. This is depicted in Fig. 2 where the
wavy line starting from a cross represents the external magnetic
field. The two diagrams in Fig. 2 that determine the coefficient
C

(1)
0 , vanish identically when contracted with the momenta car-

ried by the axial-vector currents.

Figure 3

The first non-trivial magnetic contribution to the pQCD axial-
vector current correlator is of order (eqB)2. The relevant di-
agrams are shown in Fig. 3. We obtain the coefficient of the
axial-vector current correlator to second order in the magnetic
field

ΠB
2

0 = −
(

17

18

)
(eB)2

4π2
. (13)

Using this result together with the first equation in Eq. (4), we
obtain the Wilson coefficient of the pQCD contribution to sec-
ond order in the magnetic field

C
(2)
0 = −

(
17

18

)
1

4π2
. (14)

GMOR relation.

The last ingredient needed to find s0 and C4〈O4〉 is the magnetic
field dependence of fπ. Invoking the Gell-Mann-Oakes-Renner
(GMOR) relation fπ is related to the light quark condensate 〈q̄q〉

m2
π f

2
π = −2 (mu + md)〈q̄q〉. (15)

The light-quark condensate in the presence of magnetic field
has been computed by LQCD. We make use of this result, and
parametrize the magnetic field dependence of the light-quark
condensate.

Results.
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Figure 5

The solutions for s0 and for C4〈O4〉 as functions of eB are plot-
ted in Figs. 4 and 5, respectively. Note that s0 is proportional
to the absolute value of the light-quark condensate, and that to-
gether with C4〈O4〉 it increases with increasing magnetic field.

Conclusions.
We studied QCD FESR for the axial-vector current correlator in
the presence of a magnetic field in the weak field limit eB < s0.
We have shown that the presence of the field modifies both the
pQCD as well as the hadronic sectors of the FESR. The mag-
netic field dependence of s0 is thus proportional to the magnetic
field dependence of the absolute value of the light-quark con-
densate. Therefore the magnetic field both helps the formation
of the condensate and acts against deconfinement. The gluon
condensate also grows as a function of the field strength which
goes hand in hand with the behavior of the magnetic field, both
as a catalyst of chiral symmetry breaking and confinement.

Forthcoming Research.
The results obtained here should serve as a basis for studies at
finite temperature in an external magnetic field.
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