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INTRODUCTION

I The structure of solar atmosphere above the photosphere is completely determined by the interaction of
magnetic fields.

I The magnetic fields are concentrated in thin tubes.
I Charged particles generally travel along magnetic field lines⇒ energy transfer also occurs preferentially

along magnetic tubes.
I Thus, to study the transition layer, it is important to study the physics of the transfer and losses of energy in

the plasma within a magnetic tube.

The transition region (TR) between the corona and the chromosphere of the Sun is an area in which temperature
drops from ∼ 106 K in the corona to ∼ 104 K at the upper boundary of the chromosphere. 1000
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The study of the transition region is interesting, both with respect to energy transfer into the corona
(the problem of corona heating) and in itself.

In particular, questions on
I the general mechanism of heat transfer,
I the role of the stream of runaway electrons,
I and the mechanism of the separation of the plasma into high- and low-temperature plasma

still occupy researchers.

In this work we are interested in how the physical conditions in the transition region change
depending on the conditions on the lower boundary of the transition region.

PROBLEM STATEMENT

Let us consider a magnetic tube
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I Suppose that classical heat conduction approximation is valid
I Use up-to-date data for energy loss rate due to radiation
I Assume stationary plasma flow in the tube
I Assume the absence of the heat flux from the transition region into the

chromosphere

We consider the following system of equations governing
the plasma inside the magnetic tube:
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Where

* κ – is the electronic thermal conductivity:

κ ≈
1.84× 10−5

ln Λ
T 5/2

[Braginsky, 1963; Spitzer, 1965]

* P0 = L(T0)n2 – is the power of the stationary heating of the chromo-
sphere by an “external” source, in particular, by the flow of waves from the
convection zone.

Assume that
I stationary case (∂/∂t = 0) holds
I plasma is completely ionized (mi = 1.44mH)
I plasma state is close to local thermodynamic equilibrium that is characterized

by the temperature T (x) (at T = 105 K τee ∼ 10−4 s, τpp ∼ 4× 10−3 s,
τep ∼ 10−1 s, τf

>∼ (1− 10) s.⇒ Te = Tp = T )
I plasma is optically thin at T > 3x104 K,
I the tube has a constant cross-section,
I viscosity is negligible

* L = L(T ) – radiative energy losses function:
(CHIANTI, [Phillips et al., 2008])

-21

T, K

L
, 
e
rg

 c
m

  
c

-3
  
-1

Cox and Tucker

CHIANTI-22

-23

4 5 6 7

Boundary conditions:

n
∣∣∣

T =T0

= n0, v
∣∣∣

T =T0

= v0,

T (0) = Tup/2,
dT
dx

∣∣∣
x→∞

= 0.

Let us consider two opposite cases:

• the tube is oriented horizontally

v 6= 0, g = 0

(in this case we can see the in-
fluence of the presence of plasma
flows on the physical conditions in the
TR)

T0 = 104 K, n0 = 1010 cm−3,

Tup = 2× 106 K,
v0 ∈ [0,∞)− parameter.

• the tube is oriented vertically

v 6= 0, g = g�

(the influence of the presence of
gravitation)

n(T ), p(T ), v(T ) DISTRIBUTIONS

- In the case of horizontally oriented tube the first three equations of the system can be solved analytically:
n =

n0T0

T
·

1
2
· (1 + r)(1± f (T )),

p = p0 ·
1
2
· (1 + r)(1± f (T )),

v = v0 ·
1
2r
· (1 + r)(1∓ f (T )).

Here

r =
min0v2

0

2 p0
=

(
v0

vs(T0)

)2

,

f (T ) =

√
1−

4rT
(1 + r)2T0

.

For v0 < vs(T0) we have (+,+,−),
for v0 > vs(T0) we have (−,−,+).

From the condition of the nonnegativity of the expression under the root sign we
can see that

T ∈ (0, Tcr], Tcr =
(1 + r)2T0
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For v0 < vs(T0) one can see that n, p remain equal to nv=0, pv=0 for the temperatures below Tcr . Here the case p = const applies.

- In the case of vertically oriented tube we solve the system numerically.
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I Positive and negative velocities are growing with different gradients.
I Velocities growing with the temperature much faster than in the case g = 0.

TEMPERATURE DISTRIBUTION
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All lines except for the green one correspond to the case g = 0.
Green line corresponds to the case v0 = 0, g = g�.

I v = 0, g = 0 This case can be solved analytically
F = −κ

dT
dx
,

F =

(∫ T

T0

2 (L(T ′)− L(T0))κn2dT ′
)1/2

.

I v 6= 0, g = 0
y =

dT
dx
,

dy
dT

= f (y , T ) =
L(T )n2 − P0

κ

1
y
−

1
κ

dκ
dT

y +
1
κ

dFv

dT
.

I v 6= 0, g = g� 

dT
dx

= w ,

dv
dx

= f1(T , v ,w),

dw
dx

= f2(T , v ,w).

* Plasma is divided into high- and low-temperature parts (because of the
L(T ) form).
* Plasma flow from the corona in the chromosphere “promotes” heat
propagation from the corona in the TR; the chromosphere is heated more deeply
than in the case v = 0.
* Plasma flow from the chromosphere in the corona “prevents” the heat
propagation. A part of the heat energy returns into the corona together with the plasma
stream.
* The gravitational force compresses temperature distributions (makes gradients
of temperature and other variables bigger).
* Classical collisional approximation is valid only for distributions obtained
with v0 ∈I, II, III.

THE ORIGIN OF THE CRITICAL TEMPERATURE

From the mathematical point of view Tcr is the boundary of the allowed temperature range.

From the physical point of view Tcr is the temperature at which plasma flow velocity is equal to the local sound velocity. v(Tcr) = vs(Tcr)

From the two following figures one can see that Tcr can be reached in the transition region or in the corona depending on the velocity at the lower boundary of
the transition region.
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We can separate out 4 different velocity ranges:

I v0 ∈ I : Tcr > Tup => v < vs in the transition region. Regime
p = const applies, concentration and pressure temperature
distributions don’t “ feel” plasma flow. Quiet transition region.

I v0 ∈ II : Tcr ≤ Tup => v(Tcr) reaches vs(Tcr) in the transition
region. Shock waves can occur.

I v0 ∈ III : Tcr ≤ Tup => v(Tcr) drops to vs(Tcr) in the transition
region. Shock waves can occur.

I v0 ∈ IV : Tcr > Tup => => v < vs in the transition region.
Regime n = const applies.
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I In the case g = g� range I, for which there are no shock waves in the TR,
become smaller than in the case g = 0,

I and it becomes asymmetric with respect to zero: it’s shifted towards the
negative velocities (the ones directed towards the corona).

COMPARISON WITH THE OBSERVATIONS

Obtained DEM distributions:
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Differential emission measure DEM = d ME
d T = |ME =

x∫
0

n2
e dl| =

n2
edx/dT = ne d ξ/d T

Points correspond to observational data obtained by SUMER/SOHO,
1997. [Landi et al.,2008;Curdt et al.,2001] (differential emission measure,
which is averaged over the entire disk of the quiet Sun, for a spectral
line excited at a given temperature).

Green lines – g = g�, v0 = 0km/s, n0 ∈ [1010 − 1011]cm−3 – TR
concentrations.
I When n0 is bigger, then DEM is bigger (because with increase of

concentration, the amount of emitting material is growing).
I The influence of gravitation becomes noticeable only in the upper

part of the TR.
I Results obtained for v0 ∈ I and for the TR concentrations are

consistent with the observational data.

The observations correspond to the average velocity of the plasma on the Sun. Therefore, the observed differential emission measure cannot be identified with
the specific plasma velocity within a single magnetic tube. When observations with the resolution more than 100 km/pix will appear, it would be possible to
obtain new information regarding boundary conditions in the chromosphere using obtained DEM profiles.

RESULTS

For horizontally and vertically oriented magnetic tubes:
I For various plasma flux velocities specified on the lower boundary of the chromosphere-corona transition region, we found temperature dependencies of

plasma concentration, velocity and pressure along magnetic tube with one end immersed in the chromosphere and the other end located in the corona.

I We also obtained stationary temperature distributions along the magnetic tube. At each point of the distribution, there is a balance between the heating by the
classical heat flux, the energy losses through the radiation of optically thin plasma and the energy transport associated with plasma flow.

I We then determined:
(a) the range of velocities at the lower boundary of the chromosphere-corona transition region (v0) for which generation of shock waves in the transition region
is possible;

(b) the range of v0 for which transition region can be considered in the classical collisional approximation,

(c) and the range v0 for which the heating regime is close to p = const and computed radiation values are consistent with the results of satellite observations of
extreme ultraviolet (EUV) radiation from the transition region.


