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Abstract

For the last several years I have been pursuing a project of mapping the

geometry of the exceptional Lie groups g2, f4, e6, e7, e8 and how they act as

symmetries of different physical models. The method used to construct the

corresponding Lie algebras utilizes the Tits formula, which exploits the Jordan

algebraic structure, arranging the groups into magic squares and highlighting

the role of the octonions. I have written a Mathematica program to gener-

ate the fundamental smallest-dimensional irreducible representations and the

adjoint of each of the exceptional Lie algebras. I have also developed an

algebraic method to determine the global structure of the full group, which

for the compact form is a generalization of the Euler angles for SU(2), while

for the non compact forms it is based on the Iwasawa decomposition.

Then I have applied this knowledge of the geometric structure of the ex-

ceptional Lie groups to the investigation of their action on various physical

models, such as supergravity, where they describe the electric magnetic du-

ality of the theory as well as the stabilizer of the scalar manifolds and of

certain black hole orbits under the attractor mechanism. I have analyzed the

structure of the embeddings of certain sl(2) subgroups, such as the principal

triple, which determines the cohomology of the group. Such sl(2) subgroups

are relevant for quantum information theory and for confinement in the cor-

responding gauge theories.
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1. Exceptional Lie groups and normed division algebras
(a) Normed division algebras and split composition algebras

The octonions can be defined by: O ∼= 〈1, e1, . . . , e7〉R,
with ei imaginary units: e2

i = −1, 1 the identity: 1 ei = ei 1 = ei
and multiplication rule described by the Fano plane:

Let (ei, ej, ek) be an ordered triple of points
on a given line in the order of the arrow.
Then: ei ej = ek, ej ei = −ek.

The split octonions OS can be obtained e.g. by substituting
ei → ẽi, i = 4,5,6,7, so that ẽ2

i = 1 instead of e2
i = −1:

OS ∼= 〈1, e1, e2, e3, ẽ4, . . . , ẽ7〉R.
Subalgebras corresponding to the quaternions H and the com-

plex numbers C are e.g.: H ∼= 〈1, e1, e5, e6〉R and C ∼= 〈1, e5〉R.
The split quaternions HS and the split complex numbers CS can
be constructed as: HS ∼= 〈1, e1, ẽ5, ẽ6〉R and CS ∼= 〈1, ẽ5〉R.

(b) Vinberg’s formula

Vinberg’s formula [Onishchik, Vinberg, Lie Groups and Lie Algebras III,

Springer, Berlin, 1991] associates to the division algebras A and B
the Lie algebra L(A,B) defined as:

L(A,B) = tri(A)⊕ tri(B) u 3A⊗ B,
where Tri(A) is the triality, generalizing the concept of deriva-

tions:

Tri(A) = {(A,B,C) with A,B,C ∈ End(A) | A(x1x2) = B(x1)x2 + x1C(x2)} .
Vinberg’s formula is manifestly symmetric: L(A,B) = L(B,A).

It can be rewritten in terms of symmetries of Jordan algebras,
yielding the equivalent Tits’ formula:

L(A,B) = Der(A)⊕Der(J(B))⊕
(
A0 ⊗ J0(B)

)
.

Here Der(A) is the algebra of the derivations of A;
J(B) is the Jordan algebra on B, i.e. the set of all 3×3 matrices
J with entries in B satisfying ηJ†η = J, where η is the metric
(Euclidean or Lorentzian) of the Jordan algebra J(B), and the
Jordan product ◦ is defined as the symmetrized matrix multipli-
cation;
A0 is the set of the traceless elements of A.

(c) Dynkin Diagrams and Fundamental Representations

E6 :E6 :E6 :
α1(27) α2(351) α3(2925) α4(351

′) α5(27
′)

α6(78)

u u u u u
u

E7 :E7 :E7 :
α1(133) α2(8645) α3(365750) α4(27664) α5(1539) α6(56)

α7(912)

u u u u u u
u

E8 :E8 :E8 :
α1(3875) α2(6696000) α3(6899079264)α4(146325270) α5(2450240)α6(30380) α7(248)

α8(147250)

u u u u u u u
u

F4 :F4 :F4 :

α1(52) α2(1274) α3(273) α4(26)u u u u

G2 :G2 :G2 :

α1(14) α2(7)u u

1

Lie groups are classified by the Dynkin diagram, describing the structure of

their root system and determining the fundamental representations. All of the

forms of the exceptional Lie groups can be recovered by means of the Tits’

formula. I have written a Mathematica program to construct the fundamental

smallest-dimensional irreducible representations and the adjoint.

(d) Magic squares

Vinberg’s formula allows to arrange the Lie algebras it defines
into magic squares.
The Freudenthal-Tits magic compact square L3(A,B)

[Freudenthal, Adv. Math. 1, 145 (1963); Tits, Nederl. Akad. Wetensch.
Proc. Ser. A 69, 223 (1966)]

R C H O
R SO(3) SU(3) USp(6) F4(−52)

C SU(3) SU(3)× SU(3) SU(6) E6(−78)

H USp(6) SU(6) SO(12) E7(−133)

O F4(−52) E6(−78) E7(−133) E8(−248)

The single split Günaydin-Sierra-Townsend magic square L3(AS,B)

[Günaydin, Sierra, Townsend, Phys. Lett. 133B (1983) 72]

R C H O
Aut(J3(B)) → R SO(3) SU(3) USp(6) F4(−52)

Str0 (J3(B)) → CS SL(3,R) SL(3,C) SU∗(6) E6(−26)

Conf(J3(B)) → HS Sp(6,R) SU(3,3) SO∗(12) E7(−25)

QConf(J3(B)) → OS F4(4) E6(2) E7(−5) E8(−24)

The double split Barton-Sudbery magic square L3(AS,BS)

[Barton, Sudbery, Adv. in Math. 180, 596 (2003), math/0203010 [math.RA]]

R CS HS OS

R SO(3) SL(3,R) Sp(6,R) F4(4)

CS SL(3,R) SL(3,R)× SL(3,R) SL(6,R) E6(6)

HS Sp(6,R) SL(6,R) SO(6,6) E7(7)

OS F4(4) E6(6) E7(7) E8(8)

By means of Lorentzian Jordan algebras and the correspond-
ing magic square, I have been able to recover also F4(−20) and
E6(−14):

The Lorentzian non split magic square L(1,2) (A,B)
[with S. Cacciatori and A. Marrani, arXiv:1208.6153 [math-ph]]

R C H O
R SL(2,R) SU(2,1) USp(4,2) F4(−20)

C SU(2,1) SU(2,1)× SU(2,1) SU(4,2) E6(−14)

H USp(4,2) SU(4,2) SO(8,4) E7(−5)

O F4(−20) E6(−14) E7(−5) E8(8)

2. Global parametrizations of Lie groups: The Iwasawa parametriza-

tion for the noncompact form and the Euler angles for the compact form
[with S. Cacciatori, arXiv:0906.0121 [math-ph]]

1) Identification of the Lie algebra h corresponding, respectively, to the
symmetrically embedded maximal compact subgroup H for the Iwasawa
parametrization, or the symmetrically embedded maximal subgroup H
with respect to which the Euler angles are constructed:
g = h⊕ p, with p the vector space orthogonal to h and h =dim(H).

2) Choice of a Cartan subalgebra a as a pivot, in such a way as to have the
maximal number of generators in G/H. It is generated by l commuting
generators {c1, . . . , cl}, where l is the rank of the group. Out of these, at
most r can be chosen outside of H, i.e. {c1, . . . , cr}, where r is the rank
of the coset G/H:
a = ah ⊕ ap, with ap = a ∩ p, ah ⊂ h, dim(ap) = r, dim(ah) = s = l − r.

3) Calculation of the corresponding system of positive roots {αi} and of the
corresponding eigenmatrices {λαi

}, i = 1, . . . h − k, with k the dimension
of the normalizer k of ap in h.

4) Computation of a realization of a generic element g of the group as:
g = HAB

with H = the subgroup corresponding to the fiber,
A = the Abelian subgroup generated by ap,

B =

{
N nilpotent subgroup generated by {λαi

} for the Iwasawa param.;
H/K with K the subgroup generated by k for the Euler angles.

5) For the Euler angles, choice of the range of the coordinates yi, i = 1, . . . , r
corresponding to the generators of A: 0 ≤ ~αi ·~y ≤ π, 0 ≤∑r

i=1 ni~αi ·~y ≤ π
with

∑r
i=1 ni~αi the highest root of G/H.

3. Applications to supergravity

Exceptional Lie groups are relevant for extended supergravity
theories, where they enter as the electric-magnetic dualities or
the stabilizers/isotropy groups of scalar manifolds and of certain
black hole orbits under the attractor mechanism. (For a review of
symmetric spaces in supergravity see e.g. [Ferrara, Marrani, arXiv:0808.3567]
or [Boya, arXiv:0811.0554]). Magic squares describe part of the web
of dimensional reductions and truncations of supergravities in
various space-time dimensions.

Examples studied in the framework of this program:
(a) Lorentzian Jordan algebras and the corresponding magic squares =⇒

Construction of F4(−20) and of E6(−14), relevant for supergravity, e.g. the
latter being the stabilizer of the large non-BPS U-orbit with vanishing
central charge of the magic supergravity in D = (3,1) dimensions.
[with Cacciatori, Marrani, arXiv:1208.6153 [math-ph]]

(b) Classification of charge orbits for black holes in 4-dim.
[
with Marrani,

Ferrara, Zumino, arXiv:0902.3973 [hep-th]
]

and 5-dim. supergravity[
with Marrani, Ferrara, Zumino, arXiv:1006.3101 [hep-th]

]

(c) Iwasawa parametrization and E6−covariant formulation for E7(−25)

E6×U(1)/Z3
, rel-

evant for magic N = 2 supergravity in D = 4 space-time dimensions =⇒
The E6-covariant expression is the analogue of the Calabi-Vesentini co-
ordinates, exhibiting the maximal possible covariance, while the Iwasawa
decomposition is SO(8)-covariant, highlighting the role of triality.
[with Cacciatori, Marrani, arXiv:1201.6314 [hep-th]]

(d) Iwasawa parametrization of E7(7)
[with S.L. Cacciatori, A. Marrani, arXiv:1005.2231, 1202.3055 [hep-th] ]

• It is relevant for N = 8 supergravity in D = 4 space-time dimensions
[Cremmer, Julia, Nucl. Phys. B159, 141 (1979)].

• It is one of the four real forms of E7: it is the split form (i.e. maximally
non compact form). The second subscript in the name E7(7) indicates
the difference between the number of non compact (70) and of compact

(63) generators. Its maximal compact subgroup is given by SU(8)
Z2

.

• By exploiting its symplectic structure, following [Adams,“Lectures on
exceptional Lie groups”, The University of Chicago Press, Chicago and
London (1996)], its fundamental representation can be constructed as
the algebra sl(V )⊕ Λ4V 4 acting on Λ2V ⊕ Λ2V ∗ with V = R8, V ∗ its dual
and ∧ the wedge product.

• Define the 56 x 56 matrices (1 ≤ i < j ≤ 8,1 ≤ k < l ≤ 8,1 ≤ m < n ≤ 8):
M±kl =

∑
m,n(U±klimDkljn +DklimU

±
kljn) with

U±klim ≡ δkmδli ± δkiδlm and Dklim ≡
{
δim for k 6= l 6= i;
0 otherwise.

,

M±
I ≡ 1√

2
(λI ± λTI ), with λi1i2i3i4 =

(
0 εi1i2i3i4ijkl

δijkli1i2i3i4
0

)
, and

hDα
, (α = 1, . . . ,7) generated by the embedding of the 7 diagonal traceless

8 x 8 matrices Dα in R56 × R56.
Then SU(8) is generated by the 63 antisymmetric matrices {M−kl,M−

I8
},

while E7(7)

SU(8)/Z2
is generated by the 70 symmetric matrices {M+

kl ,M+
I8
, Dα},

where I8 = {i1i2i38}.

4. Application to quantum information theory and the embed-

ding of sl(2)7 in e7[
with B. Van Geemen, arXiv:1003.4255 [quant-ph]

]

Motivation: Relation between quantum information theory and

supergravity discovered by Duff and Ferrara [Duff, Ferrara, quant-

ph/0609227, hep-th/0612036, arXiv:0704.0507], linking entanglement

measures for qubits to black hole entropy.

Qubits in quantum information theory

k-qubits: non-zero elements of the finite abelian group Lk = Zk
State space Hk: 2k-dim. vector space of C-valued maps Lk → C
Action of the qubits on this state space can be extended to an

action of the group generated by the generalized Pauli matrices,

denoted as the Heisenberg group Hk, whose normalizer coincides

with a quotient of the Weyl group of E7 by Z2.

=⇒ Study of emebddings of sl(2)7 in e7 as Lagrangian subspaces

of Z6
2, on which the Weyl group is acting,

=⇒ Proof that there are 135 such embeddings and computation

of their weights.

5. Study of sl(2) subgroups

Following Dynkin [Dynkin, Mat. Sb. (N.S.), 30(72):349–462 (1952)] I
have computed [with Cacciatori,Ferrara,Marrani, arXiv:1402.5063 [hep-th]]

the principal [B. Kostant, Am. J. Math. 81, 973–1032 (1959)] and then
the maximal subgroups of type A1, i.e. SL(2) or SU(2), for all
the exceptional Lie groups.
Method: Given a Lie algebra g of rank l with Cartan subalgebra ag, the Cartan

subalgebra ak of a subgroup k of rank r can be chosen as: ak = Pag, with P

called the projection matrix. For a sl(2) subgroup of rank 1, it can be found

by solving the linear system: (h, αi) = di, i = 1, . . . , l, with h its Cartan gener-

ator and ~d = (d1, . . . , dl) its Dynkin vector.

Using my Mathematica package, I have obtained explicit expres-
sions for the generators of the above A1 subgroups and imple-
mented the calculation of their branching rules.

Branching of Branching of
G Dynkin Vector Projection Vector smallest adjoint

fundamental

E7 2 2 2 0 2 2 2 21 40 57 72 50 26 37 21
2

15
2

11
2

5
2

13 11 9 8 7 2×5 3 1

2 2 2 2 2 2 2 27 52 75 96 66 34 49 27
2

17
2

9
2

17 13 11 9 7 5 1

2 2 0 2 0 2 2 2 38 74 108 142 174 118 60 88 19 17 14 13 2×11 9 8 7 5 3 1

E8 2 2 2 2 0 2 2 2 46 90 132 172 210 142 72 106 23 19 17 14 13 11 9 7 5 1

2 2 2 2 2 2 2 2 58 114 168 220 270 182 92 136 29 23 19 17 13 11 7 1

Conclusions and outlook

• In a project to map the geometry of the exceptional Lie
groups, I have developed a Wolfram Mathematica program
(http://www.mat.unimi.it/users/cerchiai/MathematicaProgram/, LMU-

ASC 78/14, work in progress), which generates the fundamental
smallest-dim. irreducible representations and the adjoint of
all the exceptional Lie algebras, as well as the Cartan subal-
gebras and their root systems.

• It has been applied e.g. to the study of some novel Lorentzian
magic squares, which allow to explicitly construct also F4(−20)
and E6(−14) and appears in the study of supergravity of
square of Super-Yang-Mills in 3 dimensions [Borsten, Duff,

Hughes, Nagy, arXiv:1301.4176 [hep-th]].

• Starting from the explicit expressions for Lie algebras of the
exceptional Lie groups, global parametrizations of the cosets
E7(−25)

E6×U(1)/Z3
, relevant for magic N = 2 supergravity in D = 4,

and
E7(7)

SU(8)/Z2
relevant for N = 8 supergravity in D = 4, have

been constructed.

• The explicit computation of subgroups is possible, e.g. of

sl(2) subalgebras. These generate nilpotent orbits, rele-

vant e.g. for the study calorons (see e.g. [Diakonov, Petrov,

arXiv:1011.5636 [hep-th]]) in the framework of confinement [Cossu,

D’Elia, Di Giacomo, Lucini, Pica, arXiv:0710.0481 [hep-lat]].

• Other embeddings that can be studied are e.g. sl(2)7 in e7,

which is important for quantum information theory as well as

defining a “curious” 4-dim N = 1 supergravity [Duff, Ferrara,

arXiv:1010.3173 [hep-th]] with coset SL(2)7/SO(2)7.

• Construction of non symmetric embeddings, such as e.g.
g2(2)
sl(3) or

f4(4)
sl(3)×sl(3) is feasible. This is relevant for the deter-

mination of their properties in geometry and for supergravity

in physics.


