Exotic mesons in a holographic approach to QCD

L. Bellantuono, P. Colangelo, F. Giannuzzi Università degli Studi di Bari, INFN Bari European Physical Journal C (2014) 74:2830

QCD describes strong interactions among quarks as processes with colored self-interacting gluons exchanged. This picture brings to the prediction of hybrid bound states with gluons appearing as constituents. Hybrid mesons are configurations composed by a quark, an antiquark and an excited gluon, which accounts for either ordinary or exotic J^{PC} quantum numbers. Mesons with exotic quantum numbers cannot be described as simple quark-antiquark pairs, so their detection would demonstrate the existence of non-standard structures comprising gluons as constituents. Several QCD models indicate the hybrid meson with quantum numbers $J^{PC} = 1^{-+}$ as the lowest-lying exotic state. In the light quark sector there are at least three quite well established hybrid candidates: the $\pi_1(1400)$ and the $\pi_1(1600)$, observed in diffractive $\pi^- N$ reactions and $\bar{p} N$ annihilation, and the $\pi_1(2015)$, seen only in diffraction.

Soft-Wall AdS/QCD

SUPER-YANG-MILLS (SYM) theory on Minkowski space \mathcal{M}_4

- Coupling constant g_{YM}
- N =4 SUSY generators
- Gauge group $SU(N)_{color}$

Strong-coupling limit

 $N \rightarrow \infty$, $\lambda = g_{yM}^2 N \rightarrow \infty$, $g_{yM}^2 \rightarrow 0$

TYPE IIB STRING theory on $AdS_5(R) \times S^5(R)$ space

- Coupling constant g_s
- R curvature radius
- $\sqrt{\alpha'}$ length of the string

Supergravity limit

$$g_s \rightarrow 0 e R^2/\alpha' \rightarrow \infty$$

SYM/SUGRA DICTIONARY (Gubser, Klebanov, Polyakov, Witten)

Maldacena

conformal dimension Δ

To describe hybrid $J^{PC} = 1^{-+}$ mesons, we use the QCD local operator $J_{\mu}^{a} = \overline{q} T^{a} G_{\mu\nu} \gamma^{\nu} q$ $\mu, \nu = 0, 1, 2, 3$

with $G_{\mu\nu}$ the gluon field strength and T^a flavour matrices normalised to $Tr[T^aT^b] = \delta^{ab}/2$. The dual field is a 1-form

$$H_M = H_M^a T^a$$
 $M = 0,1,2,3,4$

whose dynamics is described by the action

$$S_{SUGRA} = \frac{1}{k} \int d^4 x \int_0^\infty dz \sqrt{|g|} e^{-c^2 z^2} Tr \left[-\frac{1}{4} F^{MN} F_{MN} + \frac{1}{2} m_5^2 H_M H^M \right]$$

with $F_{MN} = \partial_M H_N - \partial_N H_M$ and g determinant of the Poincarè metric

$$ds^{2}|_{AdS_{5}} = \frac{R^{2}}{z^{2}} (dt^{2} - d\vec{x}^{2} - dz^{2}), \quad z > 0$$

The Soft-Wall factor $e^{-c^2z^2}$ gives the infrared conformal symmetry breaking through the mass scale c.

 $H_0^{a\mu}(x)$ is interpreted as the source of the operator $J_u^a(x)$

 $Z_{SUGRA} \simeq \exp[iS_{SUGRA}[H]], H^{a\mu}(x,0) = H_0^{a\mu}(x)$ with $H^{a\mu}(x,z)$ solution of the Euler-

Lagrange equations on $AdS_5(R)$

Two-point correlation function $\Pi_{\mu\nu}^{ab}(x-y) = \langle J_{\mu}^{a}(x)J_{\nu}^{b}(y) \rangle = \langle J_{\mu}^{a}(x)J_{\nu}^{b}(y) \rangle$

$$\Pi_{uv}^{ab}(x-y) = \langle J_u^a(x)J_v^b(y)\rangle =$$

$$= \frac{1}{Z_{SYM}[0]} \left(-i\frac{\delta}{\delta H_0^{a\mu}(x)}\right) \left(-i\frac{\delta}{\delta H_0^{b\nu}(y)}\right) Z_{SYM}[H_0] \left| \underbrace{-\frac{\delta^2(S_{SUGRA})_{\text{on shell}}}{\delta H_0^{a\mu}(x)\delta H_0^{b\nu}(y)}}_{H_0=0}\right|_{H_0=0}$$

Mass Spectrum and Decay Constants

In the Fourier space the ${ ilde H}_u$ field can be decomposed in a longitudinal ${ ilde H}_u^{||}$, and in a transverse ${ ilde H}_u^\perp$ component; the latter satisfies the condition $q^{\mu}\tilde{H}_{\mu}^{\perp}=0$ and can be used to describe the 1^{-+} mesons.

The equation of motion for \tilde{H}_{μ}^{\perp} is

$$\partial_{z} \left[\frac{1}{z} e^{-c^{2}z^{2}} \partial_{z} \tilde{H}_{i\mu}^{\perp} \right] + \frac{1}{z} e^{-c^{2}z^{2}} q^{2} \tilde{H}_{\mu}^{\perp} - \frac{8}{z^{3}} e^{-c^{2}z^{2}} \tilde{H}_{\mu}^{\perp} = 0$$

EIGENFUNCTIONS

The Soft Wall model produces a 1⁻⁺ spectrum with a linear Regge trajectory $M_n^2 \approx n$ having the same slope as for other bound states with different quantum numbers and quark content.

J^{PC}	M_n^2
$1^{}(\bar{q}q)$	$c^{2}(4n+4)$
$0^{++}(\overline{q}q)$	$c^{2}(4n+6)$
$0^{++}(glueball)$	$c^{2}(4n+8)$
$1^{-+}(\bar{q}Gq)$	$c^2(4n+8)$

criterion chosen for fixing the mass scale c. The mass of the radial excitations grows more slowly than in the Hard Wall model, where $M_n^2 \approx n^2$.

For the lowest-lying state we find $M_0 \approx 1.1 - 1.3$ GeV, depending on the

The two-point correlation function in the Fourier space can be expressed as the sum of a transverse and a longitudinal contribution:

$$\Pi_{\mu\nu}^{ab}(q) = -\left(\eta_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^{2}}\right) \frac{\delta^{ab}}{2} \Pi^{\perp}(q^{2}) + \frac{q_{\mu}q_{\nu}}{q^{2}} \frac{\delta^{ab}}{2} \Pi^{\parallel}(q^{2})$$
The poles of $\Pi^{\perp}(q^{2})$ represents a spectrum $M_{n}^{2} = c^{2}(2n+2)(n+2)$ residues

The poles of $\Pi^{\perp}(q^2)$ reproduce the mass spectrum $M_n^2 = c^2(4n+8)$ with residues

$$F_n^2 = \frac{2Rc^8}{3k}(n+3)(n+2)(n+1)$$

The ratio $R/k = 2/(5\pi^4)$ is fixed by matching the leading-order perturbative QCD expression for $\Pi^{\perp}(q^2)$ at $q^2 \rightarrow \infty$.

Stability against thermal effects

Temperature can be incorporated in the holographic models introducing a black hole in the $AdS_5(R)$ space

$$ds^{2} = \frac{R^{2}}{z^{2}} \left(f(z) dt^{2} - d \vec{x}^{2} - \frac{dz^{2}}{f(z)} \right), \quad f(z) = 1 - \frac{z^{4}}{z_{h}^{4}}$$

with the horizon position related to the inverse temperature by $z_h = 1/(\pi T)$.

Spectral function $\rho(q^2) = \operatorname{Im} \Pi^{\perp}(q^2)$

Squared mass m^2 and width Γ of the lightest 1^{-+} meson at increasing temperature (with c=1)

At the *melting temperature* the peak in the spectral function is reduced by a factor $\simeq 20$ with respect to the point where Γ starts to broaden.

RESPONSE TO TEMPERATURE OF BOUND STATES

HYBRID MESONS MELT AT A LOWER TEMPERATURE!

The *melting temperature* of the hybrid mesons can also be determined computing the

binding potential in the Schrödinger-like equation for the transverse field $\tilde{H}_i^{\perp}(z,q)$

depending on the temperature through the horizon position. Below the melting temperature, the r-dependence of the potential becomes monotonous, such that no quasi-bound states can be formed.

