Open charm measurement with a new vertex detector at the NA61/SHINE experiment at the CERN SPS

Dag Toppe Larsen

Jagiellonian University

Erice, June/July 2015

・ロト ・聞ト ・ヨト ・ヨー うへぐ

NA61/SHINE experiment set-up

Fixed-target experiment at the CERN SPS

NA61/SHINE physics goals

- Strong interactions programme
 - Search for the critical point of strongly interacting matter
 - Study of the properties of the onset of deconfinement
- Hadron-production measurements for neutrino experiments
 - Precise data on p+C and p+(long target) interactions for the T2K experiment at J-PARC and Fermilab neutrino experiments for computing initial neutrino fluxes
- Hadron-production measurements for cosmic ray experiments
 - Reference measurements of p+C, p+p, p+C, and K+C interactions for cosmic-ray physics (Pierre-Auger and KASCADE experiments) for improving air shower simulations

NA61/SHINE strong interactions programme

Energy scan of the phase diagram

Search for critical point of strongly interacting matter

K/π ■ NA49 Bata

Ur0 MD v1.3

(0 + 0)/n

NA49 Data
UrQ MD v1.3

10²

STAR Data

a 🕴 🖲

10

An addition of a vertex detector (close to the primary vertex) to the current set-up will allow for measurements of open charm

5

Open charm direct measurement motivation

- Measurements of heavy flavour mesons important for understanding A+A reactions at relativistic energies
- Open charm (charm and light quark): two models
 - pQCD-based model
 - Perturbatively created c quark forms bound state with d, u or s quark
 - Statistical model
 - In 1997, Gorenstein and Gazdzicki observed that J/ψ ($c\overline{c}$) yield from A+A proportional to pion multiplicity
- For Pb+Pb @ 158AGeV yields from pQCD and statistical approaches differ by factor 30
- Also predicted system sizes very different

Open charm direct measurement motivation (cont.)

- J/ψ measurements at top SPS energies by NA38/NA50 and NA60 are consistent with pQCD for $N_{part} < 200$, but not above
 - Anomalous J/ψ suppression
 - Onset of QGP, or other scenario?
 - Enhancement of open charm in A+A may be correlated with suppression of J/ψ

- Direct open charm measurement needed to understand validity of pQCD and statistical models
 - NA61/SHINE will be able to do this measurement with the vertex detector upgrade at SPS energies
 - ALICE is upgrading vertex detector to measure open charm at LHC energies
 - NA61/SHINE and ALICE measurements complement each other

Vertex detector for NA61/SHINE

• New vertex detector will enable NA61/SHINE to do direct open charm measurements

《曰》 《聞》 《臣》 《臣》 三臣

- Placed just behind target
- Based on Mimosa-26 sensor chip
- Challenging to keep material budget low, but can take advantage of carbon-fibre mechanical support

Vertex detector simulations

- Simulations show that direct open charm measurements for NA61/SHINE will be possible with the vertex detector
- Prototype optimised for D⁰
- Optimal sensor locations found from simulations
- AMPT event generator

Combinatorial invariant mass spectrum for 0-10% central Ar+Ca @ 158 AGeV after background reduction. Red curve is fit to sum of exponential (background) and Gaussian function (D0 signal). No PID information used in analysis. J.Phys.Conf.Ser. **509** 012083 (2014)

Mimosa-26 sensor chip

Pitch size: 18.4 μ m. Resolution: 1152×576. Readout time: 115.2 μ s.

Hit occupancy for inner part of first detector station for 0-10% central Pb+Pb

	NA-61	Hybrid	CCD	MIMOSA-26
Resolution	< 5 µm	30 µm	<5 µm	3.5 µm
Material Budget	few 0.1 X _o	\sim 1% X $_{\rm o}$	~0.1% X _o	0.05% X ₀
Rad. Tol. (1)	3x10 ¹⁰ neq/cm ²	>10 ¹⁴ neg/cm ²	<10° neq/cm ²	>1013 neg/cm2
Rad. Tol. (2)	~1 krad	>10 Mrad	~1 Mrad	> 300krad
Time res.	~100 µs	20 ns	~ 100 µs	115.2 µs

Requirements of NA61/SHINE vertex detector compared to Mimosa-26 and other options considered

Schematic view of architecture of Mimosa-26 chip

Layout of prototype vertex detector with sensor locations shown as orange boxes

Carbon fibre ladders

- Sensor mechanical support by very light carbon fibre ladder
- Originally developed by St. Petersburg for ALICE ITS

11

Location of vertex detector

Small-acceptance vertex detector under construction

Hypothetical large-acceptance vertex detector

Status and plans

Detector construction

- Ongoing
 - first data taking expected next year

Simulations

- Simulations for feasibility study completed
 - now detailed simulations taking into account all effects

• Reconstruction and analysis

• Reconstruction/calibration and open charm signal extraction using simulated data ongoing

《曰》 《聞》 《臣》 《臣》 [] 臣 [