<®F POz

P

S >
THE UNIVERSITY <, ﬁ &
of EDINBURGH Thry 140

DIAGRAMMATIC REPRESENTATION OF THE
COPRODUCT OF ONE-LOOP FEYNMAN DIAGRAMS

Samuel Abreu

In collaboration with: Ruth Britto, Claude Duhr and Einan Gardi
Based on 1401.3546, 1504.00206 (with H. Gronqvist) and work to be published

ISSP 2015 — Erice



DIAGRAMMATIC INTERPRETATION OF THE COPRODUCT

The coproduct of one-loop (scalar) Feynman diagrams has a
completely diagrammatic representation. Schematically,

Fis a Feynman diagram with n propagators ;
L; are Feynman diagrams with m < n propagators ;

R; are cuts of the diagram F.

Valid in dimensional regularisation to all orders in e.

Allows to bypass the need of integration by parts (IBP) relations to
get differential equations and show that coefficients of differential
equations are derivatives of cuts.



CHOICE OF FEYNMAN DIAGRAMS

e’YEG

T3 /deH m2+/O

n
q; = ajR + lZﬁjkClz, aj, Bjr € {—1,0,1}
=1

We choose D = d — 2¢ with d € N, even, suchthatd —2 <n <d. Eg.

tadpoles and bubbles: D = 2 — 2¢;

triangles and boxes: D = 4 — 2¢;

pentagons and hexagons: D = 6 — 2¢;

o oy

F is a function of weight d/2



CUTS OF FEYNMAN DIAGRAMS

Cuts solve Landau equations', and capture discontinuities across
(physical) branch cuts:

e Of amplitudes ;

‘The Analytic S-Matrix’, optical theorem, dispersion relations?, modern
unitarity methods

e Of Individual Feynman diagrams.
Largest Time Equation, dispersion relations for Feynman diagrams *

In practice, computed using

1
kR? — m? 40

5 0 (ko) (/?2 _ m2)

1 Landau (1959), Cutkosky (1960)
2R. J. Eden, P. V. Landshoff, D. I. Olive, J. C. Polkinghorne (1966)

3D/'agmmmar, G. 't Hooft and M. Veltman (1973); E. Remiddi (1982)



MULTIPLE POLYLOGARITHMS (MPL) AND THEIR COPRODUCT

Multiple Polylogarithms:

V4
6(017"'70”;2):/ dt G(aza'”)aﬂ;t) a/7Z€C

ex. G (5n:Z) = o log"z; G (6n_1,a, ;z) = —Lin (%)

A large class of Feynman diagrams can be written in terms of MPL.
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MULTIPLE POLYLOGARITHMS (MPL) AND THEIR COPRODUCT

Multiple Polylogarithms:

6(017"'70”;2):/ dt G(aza'”)aﬂ;t) a/7Z€C
0 t — a
ex: G (6n;z) = % log" z; G (6n_1,a, ;z) = —Lip (é)
A large class of Feynman diagrams can be written in terms of MPL.
Transcendental weight:
w(G(ar,...,an2))=n  w(&)=n w(x")=n
Q-vector space of MPL forms Hopf algebra (graded by weight) — X

Equipped with a coproduct A:H - H K H

e Aq (log2(z) —2log(z) ® log(z); v, (Lis(2)) = —1 log(1 — 2) ® log(2)



COPRODUCT AND DIFFERENTIAL OPERATORS

Coproduct and discontinuities
ADisc = (Disc® id) A

Discontinuities act on the first entry of the coproduct

Coproduct and differential operators

0 . 0

Differential operators act on the last entry of the coproduct



RULES TO BUILD THE DIAGRAMMATIC COPRODUCT

A(F) = ZL,' X R;

Case 1: R; is a cut of m propagators with m odd.

L; is a diagram with m propagators obtained by deleting the uncut
propagators.

Case 2: R; 1s a cut of m propagators with m even.

L; is a sum of diagrams (times 1/2):

- the diagram with m propagators obtained by deleting the uncut
propagators ;

- all diagrams with m — 1 propagators obtained by deleting one more
propagator.



EXAMPLE: T(p?; m2,, m3,)

- Valid to all orders in €.

- Non-trivial cancelation of bubble and tadpole divergences.

- Correctly reproduces all components of coproduct Ap m.



DIFFERENTIAL EQUATIONS TO COMPUTE FEYNMAN INTEGRALS

E.Remiddi, // Nuovo Cimento A series 11, 1997; T.Gehrmann and E.Remiddi, Nucl.Phys.B. 580, 2000

e Take derivative w.rt. scale (internal mass or external channel),

o O ( 1 )_ 1

= Get linear combination of diagrams with propagators raised to different powers.
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o, ( ) 1 ( 1 1 ) (12)
9 <| _ > - n
o2 2(1 4 po3 — pr2) 214 po3 — p12) 12 — 423 Q
T 1 23
+ ( + ) 0" 4+ - —<[
T+ p3 — 2 12 — H23 T4+ po3 — pr2




DIFFERENTIAL EQUATIONS TO COMPUTE FEYNMAN INTEGRALS

E.Remiddi, // Nuovo Cimento A series 11, 1997; T.Gehrmann and E.Remiddi, Nucl.Phys.B. 580, 2000

e Take derivative w.rt. scale (internal mass or external channel),

o O ( 1 )_ 1

= Get linear combination of diagrams with propagators raised to different powers.

e Use IBP relations to reduce all diagrams that were generated by taking derivatives
to a set of ‘'master integrals’ f;.

= Solve large system of equations (FIRE, REDUZE, ...).

e Get (and solve!) differential equation in terms of simpler master integrals

T p= S (s Am).

om?

e Example:

o, ( ) 1 ( 1 1 ) (12)
9 <| _ > - n
o2 2(1 4 po3 — pr2) 214 po3 — p12) 12 — 423 Q
T 1 23
+ ( + ) 0" 4+ - —<[
T+ p3 — 2 12 — H23 T4+ po3 — pr2

c({sj},{m;},e) are derivatives of cuts!




DIFFERENTIAL EQUATIONS AND THE COPRODUCT

A2 = (de2)A

Example: Differential equation of T(p7; m%,, m3;) with p, = m%,/pj

(<)o" <1
-0%e <1
(<-+0")e ]
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DIFFERENTIAL EQUATIONS AND THE COPRODUCT

A2 = (de2)A

Example: Differential equation of T(p7; m%,, m3;) with p, = m%,/pj

s(=1)-0"e (=<1 3=
+0%e <1
e =)
e
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DIFFERENTIAL EQUATIONS AND THE COPRODUCT

A2 = (de2)A

Example: Differential equation of T(p7; m%,, m3;) with p, = m%,/pj
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DIFFERENTIAL EQUATIONS AND THE COPRODUCT

AL = (de2)A

Example: Differential equation of T(p7; m%,, m3;) with p, = m%,/pj

0 /I: _Q(u) (_ 1 B 1 )
O 201+ po3 — p2) 2 — 3

+Q(23)( P )

T4+ po3 — 2 12 — 23

WA

2(1 4+ po3 — pr2)

= ()
14+ po3 — pr2
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OUTLOOK

Can our construction be generalised to two and more loops?

In which dimensions should diagrams be evaluated?

Which combinations of diagrams appear in the first entry?

Can our construction be generalised to diagrams not expressible in
terms of MPLs?

We only use the fact that diagrams are expressible as MPLs In the
check of the conjecture, our diagrammatic rules could be more
general.
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