Diffractive Dijet Production with Leading Proton in ep Collisions at HERA

JHEP [arXiv:1502.01683]

Radek Žlebčík Charles University

Erice 2015

Diffraction

- The scattered proton stays intact
- Exchange with vacuum quantum numbers – Pomeron (from Regge theory)

HERA: ~10% of low-x DIS events diffractive

$$x_{IP} = \frac{q \cdot (p - p')}{q \cdot p} = 1 - \frac{E_p'}{E_p^{beam}}$$

Fractional momentum loss of the scattered proton

$$t = (p - p')^2 \approx -p_T^2$$

Four-momentum transfer at the proton vertex

HERA p (920 GeV) + e[±] (27.6 GeV)

Large Rapidity Gap

Hadronic activity in forward part of detector

Without

hadronic

activity in

of detector

Large Rapidity Gap

Without hadronic activity in forward part of detector

Diffractive event

Direct Proton Detection

Very Forward Proton Spectrometer

- 2 stations 218 a 222 m from interaction point
- 120 scintillating fibers in one layer

Factorization in Diffraction

• DPDFs determined from inclusive measurement are capable to predict results for other, more exclusive processes (dijets, D*), Collins 1997

$$\sigma^{D}(ep \rightarrow Xp) = \sum_{parton_{i}} f^{D}_{i}(\beta, Q^{2}, x_{IP}, t) \sigma^{ei}(\beta, Q^{2})$$

 $f_i^D(\beta, Q^2, x_{IP}, t)$ DPDFs which obey DGLAP evolution $\sigma^{ei}(\beta, Q^2)$ Partonic cross section

Hadron-Hadron Interactions

,0999)j

Don j2

KKMR [hep-ph/0306134]: Multi-pomeron exchanges introduced to take into account s-channel unitarity

Suppression factor is introduced:

Tevatron ~0.1

Export of DPDFs from HERA to Tevatron.....

Phys.Rev.Lett. 84 (2000) 5043-5048

Single-diffractive / non-diffractive Dijet cross section

Diffractive Dijet Production -Photoproduction

LO diagrams!

Diffractive Dijet Production - DIS

- Photon enters directly into the hard subprocess
- One remnant
- Factorization theoretically proven (Collins 1997)

LO diagram!

Motivation for the measurement

• Diffractive dijet photoproduction measured so far only by large rapidity gap method

 $\begin{array}{c} \text{H1 (2010)} \\ [arXiv:1006.0946] \\ \hline \sigma_{DATA} \\ \hline \sigma_{NLO} \\ \end{array} = 0.58 \pm 0.12 (\text{data}) \pm 0.17 (\text{theory}) \\ \end{array} \qquad \begin{array}{c} \text{ZEUS (2008)} \\ [arXiv:0710.1498] \\ \hline \sigma_{DATA} \\ \hline \sigma_{NLO} \\ \end{array} = 0.77 \pm 0.06 (\text{data}) \pm 0.19 (\text{theory}) \\ \hline \sigma_{NLO} \\ \end{array}$ $\begin{array}{c} \text{KKMR [arXiv:0911.3716]} \\ \text{KKMR [arXiv:0911.3716]} \\ \\ \text{S}^{2} \sim 0.5 \\ \end{array} \qquad \begin{array}{c} \text{KKMR [arXiv:0911.3716]} \\ \\ \text{S}^{2} \sim 0.6 \\ \end{array}$

- New measurement with leading proton for diffractive photoproduction and DIS as a reference
- The double ratios of data to NLO QCD prediction for photoproduction and DIS introduced to better control experimental and **theoretical** errors

Measurement Setup

- Analysis based on 2006/07 e⁺p HERA data, integrated lumi ~30 pb⁻¹
- Leading proton measured by proton spectrometer VFPS
- Photoproduction and DIS phase spaces identical up to Q^2 range
- Jets defined by k_T -algorithm

Data unfolded to the level of stable hadrons using Tikhonov method

Differential Cross Section in *z*_{IP}

- In photoproduction data suppressed by factor ~0.6 in comparison to NLO
- In DIS data satisfactorily described by NLO

Differential Cross Section in x_{γ}

Double Ratio

 Double ratio of data to NLO QCD predictions for photoproduction and DIS reduce data systematic and theoretical uncertainties

DPDFs uncertainty Overall theoretical uncertainty

For QCD scale uncertainty the scale varied simultaneously in in photoproduction and DIS by factor of 1/2 and 2 15

- Double ratios are within errors constant
- Dependence of the suppression on E_T of the leading jet not observed

Dependence on Q^2

Summary

- Dijet diffractive cross sections measured in two distinct Q^2 regions, photoproduction and DIS
- Suppression factor in photoproduction about 0.5 established
- Previous H1 measurement confirmed by complementary experimental method (detection of leading proton)
- No hint of a dependence of the suppression on x_y and E_T of the leading jet

Backup

Kinematic Quantities

0.2 < y < 0.7		
Photoproduction	Deep-inelastic scattering	
$Q^2 < 2 \mathrm{GeV^2}$	$4\mathrm{GeV}^2 < Q^2 < 80\mathrm{GeV}^2$	

Diffractive selection

$0.010 < x_{I\!P} < 0.024$	
$ t < 0.6 { m GeV^2}$	
$z_{I\!P}~<0.8$	

Jet Definition

$E_T^{*jet1} > 5.5 \mathrm{GeV}$	
$E_T^{*jet2} > 4.0 \mathrm{GeV}$	
$-1 < \eta^{\text{jet1},2} < 2.5$	