

STUDY OF DOUBLE PARTON INTERACTIONS IN THE PROCESSES WITH PHOTON AND JETS IN THE FINAL STATE IN $p\overline{p}$ Collisions at DØ.

ALEXANDER VERKHEEV FOR DØ COLLABORATION JINR, DUBNA

ISSP, 2015, Erice

OUTLINE

- Tevatron and D0 detector
- Motivation
- DP fraction
- Effective cross section
- Summary

9.0

DQ

Booster

CDF

pbar source

Main Injector & Recycler

Tevatron

9.9

- Y (

DØ DETECTOR

LUMINOSITY

MOTIVATION

- Main purpose of the study is providing more information on properties of hard events with double parton interactions.
- The rate of multiparton interactions in pp⁻ collisions is directly related to the transverse spatial distribution of the partons within proton.
- Being phenomenological, hadron structure and parton -> hadron fragmentation models need experimental input, especially at high-pT regime.
- Info about DP events is needed for an understanding of nature of signal events and correct estimation of background to many rare processes.

Higgs signal

DP background

EFFECTIVE CROSS SECTION

$$\sigma_{DP} = \frac{\sigma_A \sigma_B}{\sigma_{eff}}$$

- double parton cross section for processes A and B

 $\sigma_{\it eff}$ -factor characterizing size of effective interaction region

 $\sigma_{e\!f\!f}$ contains information about the parton spatial density distribution: Uniform parton distribution: $\sigma_{e\!f\!f}$ is large and σ_{DP} is small; Clumpy parton distribution: $\sigma_{e\!f\!f}$ is small and σ_{DP} is large.

HISTORY OF MEASUREMENTS

-					
Experiment	\sqrt{s} ((GeV) Final	state p_T^{min} (G	eV) η range	$\sigma_{ m eff}$
AFS	63	4 jets	$p_T^{ m jet} > 4$	$ \eta^{ m jet} < 1$	≈ 5
UA2	630	4 jets	$p_T^{ m jet} > 15$	$ \eta^{ m jet} < 2$	> 8.3 (95% C.L.)
CDF	1800	4 jets	$p_T^{ m jet}>25$	$ \eta^{ m jet} < 3.5$	$12.1\substack{+10.7\\-5.4}$
CDF	1800	$\gamma + 3 \; { m jets}$	$p_T^{ m jet} > 6$	$ \eta^{ m jet} < 3.5$	$14.5 \pm 1.7 \text{ (stat)} ^{+1.7}_{-2.3} \text{ (syst)}$
			$p_T^\gamma > 16$	$ \eta^{\gamma} < 0.9$	
DØ	1960	$\gamma + 3 \; {\rm jets}$	$60 < p_T^\gamma < 80$	$ \eta^{\gamma} < 1.0$	$16.4 \pm 0.3 \text{ (stat)} \pm 2.3 \text{ (syst)}$
			$p_T^{ m jet} > 15$	$1.5 < \left \eta^{\gamma}\right < 2.5$	
ATLAS	7000	W+2 jets	$p_T^{ m jet}>20$	$ \eta^{ m jet} < 2.8$	15 ± 3 (stat) $^{+5}_{-3}$ (syst)
CMS	7000	W + 2 jets	$p_T^{ m jet} > 20$	$ \eta^{ m jet} < 2.0$	$20.7 \pm 0.8 \text{ (stat)} \pm 6.6 \text{ (syst)}$

 p_{T}^{jet1} p_{T}^{jet1} p_{T}^{jet1} p_{T}^{jet2} p_{T}^{jet1} p_{T}^{jet3}

00

AFS'86, UA2'91 and CDF'93

choose 4-jets sample motivated by a large dijet cross section (but low DP fractions). Use theory predictions for the dijet cross sections.

CDF'97, D0'10

 γ +3jets events, data-driven method: use rates of Double Interaction (two separate pp^- collisions) and Double Parton (single pp^- collision) to extract σ_{eff} from their ratio. Reduce dependence on MC and NLO QCD theory predictions.

Is there a dependence on initial parton flavor?

For the first time

Phys. Rev. D 89, 072006 (2014)

Case 1: No leading jet flavor requirement (Inclusive sampe)

Case 2: Leading jet Heavy flavor requirement (HF sample)

DISCRIMINATING VARIABLE

$$\Delta S = \Delta \varphi \left(P_T^1, P_T^2 \right)$$

an azimuthal angle between two imbalance vectors.

In Single Parton (SP) events Δ S is expected to peak at π due to the momenta conservation in an event,

while in Double Parton events it should be flat due to the independence of two parton interactions.

FRACTION OF DOUBLE PARTON EVENTS

DP event fraction is found by fitting Single Parton event model and Double Parton signal event model to data.

γ + 3 jets	γ + HF + 2 jets	
0.202 ± 0.007	0.171 ± 0.020	

EFFECTIVE CROSS SECTION

- Experiment, Final state (Year) Having measured number of DP and DI events and corresponding acceptances and efficiencies one can calculate $\sigma_{\scriptscriptstyle eff}$ for both final states.
- Measured $\sigma_{\rm eff}$ is in agreement with all Tevatron and LHC measurement.

	γ + 3 jets	γ + HF + 2 jets
ff =	12.7± 1.32	14.6 ± 3.26

For the first time it is shown that

There is NO dependence of $\sigma_{\it eff}$ on the initial parton flavor.

SUMMARY

- Effective cross section (defines rate of Double Parton events) σ_{eff} has been measured using γ +3 jets final state and found to be 12.7 ± 0.2 (stat) ± 1.3 (syst) mb.
- Effective cross section has also been measured using γ+b/c+2jets final state and found to be 14.6 ± 0.6 (stat) ± 3.2 (syst) mb.
- No dependence of $\sigma_{\it eff}$ on initial parton flavor has been found.
- The obtained $\sigma_{e\!f\!f}$ values are in agreement with those measured by CDF, DØ, ATLAS and CMS collaborations.
- More details in Phys. Rev. D 89, 072006 (2014)

GRAZIE PER L'ATTENZIONE

Verkheev Alex, 2015

Data-driven method:

The number of DP events:

at on pp^- collision (Double parton scattering)

Two hard interactions

(Double Interaction) The number of DI events:

at two separate pp^- collisions

Two hard scattering events

CALCULATION OF σ_{eff}

$$P_{DI} = 2 \left(\frac{\sigma^{\gamma j}}{\sigma_{hard}} \right) \left(\frac{\sigma^{jj}}{\sigma_{hard}} \right)$$

$$V_{DI} = 2 \frac{\sigma^{\gamma j}}{\sigma_{hard}} \frac{\sigma^{jj}}{\sigma_{hard}} N_c(2) A_{DI} \varepsilon_{DI} \varepsilon_{2vtx}$$

$$P_{T}^{\gamma}$$

$$P_{DP} = \left(\frac{\sigma^{\gamma j}}{\sigma_{hard}}\right) \left(\frac{\sigma^{jj}}{\sigma_{eff}}\right)$$
$$N_{DP} = \frac{\sigma^{\gamma j}}{\sigma_{hard}} \frac{\sigma^{jj}}{\sigma_{eff}} N_c(1) A_{DP} \varepsilon_{DP} \varepsilon_{1vtx}$$

jet2

$$\sigma_{eff} = \frac{N_{DI}}{N_{DP}} \frac{N_c(1)}{N_c(2)} \frac{A_{DP}}{A_{DI}} \frac{\varepsilon_{DP}}{\varepsilon_{DI}} \frac{\varepsilon_{1vtx}}{\varepsilon_{2vtx}} \sigma_{hard}$$