

First studies towards top-quark pair differential cross section measurement in the dilepton channel at \sqrt{s} = 13 TeV with the CMS detector

Mykola Savitskyi, Maria Aldaya, Carmen Diez Pardos et al.

DESY-CMS Top Group, Hamburg

The top quark is special

Heaviest elementary particle known to date: $m_t \approx 173 \text{ GeV}$

Mass close to scale of electroweak symmetry breaking (EWSB): $\rightarrow y_{t} \approx 1$: important role in EWSB?

Decays before hadronizing: $\tau \approx 5 \cdot 10^{-25} s \ll 1/\Lambda_{_{QCD}}$ – unique window on "bare" quark

Sensitive to physics phenomena beyond the Standard Model (BSM): \rightarrow new physics may preferentially couple/decay to top

Major source of background for many Higgs and BSM searches

Why measure differentially?

Precise understanding of top quark distributions is crucial:

- Precision tests of perturbative QCD for top-quark production at different phase space regions
- Tune and test theory predictions and models:
 → potential to reduce signal modelling systematics
- Enhance sensitivity to BSM physics

LHC is a "top factory"

- Several millions of top-quark pair ($t\bar{t}$) events produced already in Run-I (\sqrt{s} = 7, 8 TeV)
- Run-II: expect much larger data sets at $\sqrt{s} = 13(14)$ TeV

 \rightarrow important to measure top quark distributions with very high precision

Top Pair Production and Decay

Production cross sections:

Energy, TeV	8	13
$\sigma_{incl}^{NNLO+NNLL}(t\bar{t})$, pb	252.89	831.76

Weak interaction: Top decay

t → W+b ~ 100 %

Top Pair Branching Fractions

Samples are classified according to W-decay: <u>dilepton</u> ($\ell\ell$), lepton+jets (ℓ +jets), all jets

proton

proton

- 1. Trigger conditions
- 2. Lepton pair selection:
 - opposite charge
 - e and $\boldsymbol{\mu}$ isolation criteria
 - $p_{_{T}}$ > 20 GeV, $|\eta|$ < 2.4
 - invariant mass: m_{_} > 20 GeV
- 3. Exclusion of Z -region:
 in ee and μμ: 76 GeV < m₁ < 106 GeV
- 4. Presence of **two jets** (anti-k_t R=0.4) with $p_{\tau} > 30$ GeV and $|\eta| < 2.4$
- 5. Missing E_{τ} > 40 GeV in ee and $\mu\mu$
- 6. At least one **b-tagged jet**
- 7. Meaningful solution for kinematic event reconstruction

 W^+

g

0000

Kinematic Reconstruction

- Measured input: 2 jets, 2 leptons, MET
- Unknowns: $\overline{p}_{v}, \overline{p}_{\overline{v}} \rightarrow 6$
- Constraints:
 - $> m_{_{t}}, m_{_{\bar{t}}} \rightarrow 2$
 - > $m_{W(+)}, m_{W(-)} \rightarrow 2$ > $(\overline{p}_v + \overline{p}_{\overline{v}})_T = MET \rightarrow 2$

- <u>Reconstructing</u> each event 100 times and <u>smearing</u> inputs by their resolution:
 - > top mass fixed to 172.5 GeV
 - > W mass at RECO level smeared accordingly to W mass distribution
 - > Jet and lepton energies are corrected for detector effects
- Consider <u>weighted average</u> of solutions for all smeared points:

$$p_{x,y,z}^{top} = \frac{1}{w} \sum_{i=0}^{100} w_i \cdot (p_{x,y,z}^{top})_i$$

0.5

-0.5

0

1.5

2

η

7. Meaningful solution for kinematic event reconstruction

Channel: combined (ee+eµ+µµ) Pseudo-data: poisson-smeared sum of all signal and background simulation samples Normalized to: $L_{int} = 5.0 \text{ fb}^{-1}$ Observable: Lepton η Signal: MadGraph+Pythia8 Private Work, 5.0 fb^{-1} at $\sqrt{s} = 13 \text{ TeV}$ Private Work, 5.0 fb^{-1} at $\sqrt{s} = 13 \text{ TeV}$

Table given after all cuts:

Process	Fraction, %
tī Signal	78.7
tt Other	14.1
tW	3.3
W+Jets	0.2
DY → ee/µµ	2.4
DY → ττ	0.6
tī+Ζ/W/γ	0.7

Control Distributions

Channel: combined (ee+eµ+µµ), $L_{int} = 5.0 \text{ fb}^{-1}$

Plots given after full selection

Pseudo-data: poisson-smeared sum of all signal and background simulation samples 8

Differential Cross Section

For each observable X the normalized differential cross section in the *i*-th bin is defined as:

$$\left.\frac{1}{\sigma}\frac{d\sigma}{dX}\right)^{i} = \frac{1}{\sigma}\frac{N_{events}^{i}}{\Delta_{X}^{i}L}$$

- N_{events}^{i} number of events after background subtraction, efficiency, acceptance and binto-bin migration correction
 - σ ~ total $t\bar{t}$ cross section in same phase space
 - *L* integrated luminosity

 Δ^i_X - bin width

• **Phase space** definition:

Top quarks, $t\bar{t}$ system (obtained via kinematic reconstruction of event) – extrapolated to full phase space after corrections for detector and hadronization effects

Leptons or b-jets – measured in visible phase space (*leptons*: $p_T > 20$ GeV, $|\eta| < 2.4$; *jets*: $p_T > 30$ GeV, $|\eta| < 2.4$) after correction for detector effects

 Bin-to-bin migrations are reduced by binning optimization and corrected by unfolding

Binning and Migrations

Migration effects studied by: •

M. Savitskyi (DESY), 30th June 2015

- **Binning criteria:** stability or purity ≥ -0.5 •
- **Response matrices** are constructed from signal MC .

Measured Cross Sections: leptons

- Normalization allows to:
 - reduce systematic uncertainties
 - perform shape comparisons of different theory models to data
- **Systematic uncertainty:** include JES and JER uncertainties for now

Measured Cross Sections: tops

- Normalization allows to:
 - reduce systematic uncertainties
 - perform shape comparisons of different theory models to data
- **Systematic uncertainty:** include JES and JER uncertainties for now

Measured Cross Sections: tt-pair

- Normalization allows to:
 - reduce systematic uncertainties
 - perform shape comparisons of different theory models to data
- **Systematic uncertainty:** include JES and JER uncertainties for now

Conclusions & Outlook

• Top-quark pair differential cross section measurements:

- Essential for constraining the SM
- Ideal probe for looking for new physics beyond the SM
- Needed for tuning of PDF sets and modern art Monte-Carlo event generators

• First studies towards measurements at 13 TeV were presented:

- Not latest status & results \rightarrow currently **Top** secret at CMS and work in progress!
- Optimize binning with final configuration of the data analysis
- Evaluate systematic uncertainties
- Compare to different theory predictions

Conclusions & Outlook

• Top-quark pair differential cross section measurements:

- Essential for constraining the SM
- Ideal probe for looking for new physics beyond the SM
- Needed for tuning of PDF sets and modern art Monte-Carlo event generators

• First studies towards measurements at 13 TeV were presented:

- Not latest status & results \rightarrow currently **Top** secret at CMS and work in progress!
- Optimize binning with final configuration of the data analysis
- Evaluate systematic uncertainties
- Compare to different theory predictions

Thank you for your attention! :-)

LHC Collider

Run 1: L_{int} ≈ 25 fb⁻¹ in 2010-2012 at 7/8 TeV

Run 2: Phase 0 in 2015-2017

- design energy: \sqrt{s} =13 TeV~14 TeV
- nominal luminosity: L~ 1.1034 cm-2s-1
- bunch spacing: 25 ns
- pile up: ~49
- L_{int} per year ~ 45 fb⁻¹

Planned to collect: $L_{int} \sim 75 - 100 \text{ fb}^{-1}$

The CMS Detector

<u>General purpose 4π detectors:</u>

Tracker: Detection and momentum measurement for charged particles **Calorimeter**: Identification and energy measurement of jets and electrons **Muon system**: Identification and momentum measurement of muons

Phase 0 (2015-2017) upgrade:

- Complete muon coverage
- Colder tracker
- Photodetectors in HCAL
- New beampipe and infrastructure updates

Visible Phase Space Definition

- Object definition at generator level:
 - > particles after radiation and hadronization
 - > leptons: from W-decay
 - > jets: anti-kT (with cone of $\Delta R=0.5$) algorithm
 - > b-jets: identified by B-hadrons
- Directly measured quantities: leptons and b-jets

Unfolding

- Unfolding techniques correct migrations between bins
- Response matrix (A): represents bin-by-bin correlations
- Unfolding problem is transformed to χ^2 minimization problem:

• Non-physical fluctuations removed by means of the regularization:

 $\rightarrow \tau - \text{continuous regularization parameter}$

 \rightarrow selected at minimum of average global correlation

• In this measurement regularized unfolding is used