CERN Compact Linear Collider: physics goals and detector challenges

Rosa Simoniello

International School of Subnuclear Physics, Erice, 24th June – 3rd July 2015

- Project for the Compact Linear Collider (CLIC) at CERN
- Motivations for a linear electron-positron collider
 Proceets of physics analyses
 - Prospects of physics analyses
- Requirements for the detector optimisation & RD
 - Vertex
 - Main tracker
 - Calorimeter system
- Conclusion

- CLIC
- CLIC = Compact LInear Collider, e⁻ e⁺
- High accelerating gradient 100MV/m:
 dual beam scheme at room temperature
- Up to high energy and luminosity

√s [GeV]	length [km]	£ [cm ⁻² s ⁻¹]
350	11	1.5×10 ³⁴
1400	27	3.5×10 ³⁴
3000	48	6.0×10 ³⁴

• Small bunch size: σ_{xyz} (40 nm, 1 nm, 44 μ m) \rightarrow beamstrahlung

Motivation for a linear e⁻e⁺ collider

- Top mass and asymmetry (stage 1)
- □ Higgs properties → model independent coupling determination (stage 1-2-3)
- Complementary info w.r.t. hadron colliders (stage 2-3) → higher sensitivity to electroweak processes
- CLIC → high energy: access to rare process, i.e.: Higgs self coupling (stage 2-3)

Precision on $g_{HHH} \simeq 10\%$ at 3 TeV

Performance requirements

- Momentum resolution $\sigma_{p_T}/p_T^2 \sim 2 \times 10^{-5} \, {\rm GeV}^{-1}$
- Jet Energy resolution

$$\frac{\sigma_E}{E} \sim 3.5 - 5\%$$

- Impact parameter resolution $\sigma_{r\phi} = 5 \oplus \frac{15}{p[GeV]} \sin^{\frac{3}{2}} \theta) \mu m$ single point resolution multiple scattering
 - Excellent determination of secondary vertices for b/c-tagging and tau reco
 - Lepton identification efficiency
 > 95% over full range of energies
 - Detector coverage in forward region

Detector Overview

Vertex detector

- Physics aim: excellent identification of secondary vertices for b/c-tagging → excellent impact parameter resolution
- Single point resolution of 3µm
 - 25μm pixel pitch
 - 2 billion pixel
- Ultra light detector: 0.2%X₀ per layer
 - Air coiling: spiral geometry to force air flow → 50mW/cm²
 - Ultra thin sensor and readout: 0.1%X₀
 - Low mass supports: $0.05\%X_0$
 - Double layers geometry to maximise the number of measurements minimazing the support material
- Occupancy of few % → first layer layout
 R = 31 mm

Vertex: sensor + readout options

- 50-300 μm sensor bump-bonded to Timepix chips, 55 μm pixel pitch
- DC-coupling with amplifier input on the readout chip

Bump-bonded assembly

Resolution: 4-18 μm

- HV-CMOS sensor glued on CLICpix ASIC, 25 μm pixel pitch
- AC-coupling → amplification of the signal on the sensor side

Main Tracker and B field

• Physics aim: excellent track momentum resolution

$$rac{\sigma(p_{\mathrm{T}})}{p_{\mathrm{T}}^2} \propto rac{\sigma}{\sqrt{N+4}BR^2}$$

- High B field (B = 4 T) and determination of the overall size of the tracker
- 7µm single point resolution
- Very light detector: 1%X₀ per layer
- Air flow not possible \rightarrow liquid cooling
- Technology: all Si, short strip or large pixel
 → size from occupancy studies

	Hits/	max strip
_Place	mm ² /BX	length / mm
<u> </u>	1.0e-4	2
F1	5.0e-5	3
B2	3.6e-5	5
F2	1.5e-5	13
B3	1.2e-5	15
រុ 🛓 F3	6.0e-6	31
¹ ¹ B4	6.0e-6	30
F4	2.4e-6	76
B5	4.0e-6	43
F5	1.5e-6	120
F6	1.3e-6	140
F7	1.3e-6	140

Calorimeter system

Physics aim: excellent jet resolution

- Typical Jet composition:
 - 60% charged particles
 - 30% photons
 - 10% long-lived neutral hadrons
- Employment of particle flow techniques
 → large impact on the detector design
- High granularity calorimeter
- Forward acceptance

Tungsten Analogue Hcal

- Analogue readout: scintillator + SiPM
- Good linearity, resolution: $\frac{\sigma_E}{E}(\pi^+, E = 3 10 GeV) = \frac{(61.8 \pm 2.5)\%}{\sqrt{E[GeV]}} \oplus (7.7 \pm 3.0)\% \oplus \frac{0.070 GeV}{E[GeV]}$
- Data-simulation in general in agreement
 room for improvement in shower shape description
- Comprehensive study of all relevant *systematic uncertainties*

Digital W Hcal option also considered \rightarrow analysis of the test beam data on going Rosa Simoniello 11

Software

• DD4hep: Detector Description for High Energy Physics

■ Complete and consistent description → Single source of detector information for display, simulation, reconstruction, analysis, alignment, etc.

• Tracking reconstruction (under development):

 Based on detector geometry, i.e.: specific algorithm to exploit double layer structure of the vertex detector

Pandora: particle flow

- Sophisticated software framework for developing patternrecognition algorithms. Large numbers of independent algorithms address specific event topologies.
- Used also in neutrino experiments (LAr TPC)

Collaboration

CLICdp collaboration: 25 institutes

- CLICdp web site: <u>http://clicdp.web.cern.ch/</u>
- CLICdp CDR: <u>http://arxiv.org/abs/1202.5940</u>

You are welcome to join!

Conclusion

- High energy e+e- linear collider aiming to precision studies
- Demanding requirements on detector layout and hardware
 Intense (and successful) R&D activities
- Sophisticated software and reconstruction algorithms
 - Fully exploit the best information from each subdetector

Thanks for your attention!

1 train = 312 bunches, 0.5 ns apart

Forced-air and thermal mock-up

- Real-size mock-up to verify simulation and study air-flow feasibility, vibrations and temperature
 - □ ~500 W heat load to extract (50mW/cm²) \rightarrow T^{Si} < 40°C after power pulsing
 - Vibration acceptable at 1-2 μm RMS amplitude
- Bending/stiffness of low mass supports (0.05%X₀)

Cooling: simulations

Cooling studies for CLIC vertex detector

- ~500 W power dissipation in CLIC vertex area
- spiral disks allow air flow through detector
- ANSYS Computational Fluid Dynamic (CFD) finite element simulation
- \rightarrow air cooling seems feasible
- 5-10 m/s flow velocity, 20 g/s mass flow

Cooling: experimental verification

- built mock-up to verify simulations (temperature, vibrations)
- measurements on single stave equipped with resistive heat loads:
 - air flow
 - temperature
 - vibrations (laser sensor)
- · comparison with simulation

Temperature increase: measurement + CFD simulation

F. Nuiry, C. Bault, F. Duarte Ramos, M.-A. Villarejo Bermudez, W. Klempt

ILCDirac

- ILCDirac: Complete Grid Solution
- Workload management, data storage, production system, bookkeeping
- Used by CLICdp, SiD, ILD, CALICE
 - Grid interface for users and production to run any LC software
- https://twiki.cern.ch/twiki/bin/view/CLIC/DiracUsage

- *Full detector description*: geometry, materials, visualization, parameters for readout, alignment, calibration, etc.
- *Consistent Description*: Single source of detector information for display, simulation, reconstruction, analysis, alignment, etc.
- Detector Palette for CLIC based on SiD model → example detector model for testing and to be updated with the most recent subdetectors
- Validation of simulation and reconstruction interface on-going

