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QCD Sum Rules.

The QCD Sum Rules are an analytical formalism, they include
non-perturbative and perturbative information of QCD. Moreover, QCD
Sum Rules are an excellent complement to numerical studies done with
Lattice QCD.

Operator Product Expansion (OPE).

The correlation function of these currents is introduced and treated in
the framework of the OPE.

ΠQCD
0 (Q2) = C0 Î +

∑
N=1

C2N (Q2, µ2)

Q2N
〈Ô2N (µ2)〉 .

OPE includes the short- and long-distance quark-gluon interaccions.
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∑
N=1

C2N (Q2, µ2)

Q2N
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QCD Sum Rules.

ΠQCD
0 (Q2)⇔ ΠHAD

0 (Q2)?

Cauchy’s Theorem.

The discontinuity across the
real axis brings in the
hadronic spectral function.

Integration around the circle
involves the QCD correlator.

The radius of the circle
(tipically named s0) is the
onset of pQCD.

Finite Energy QCD Sum Rules (FESR).
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FESR.

Time to join both sectors!!!∫ s0

0
dsP (s)

1

π
ImΠ(s) = −

∮
C(|s0|)

dsP (s)ΠOPE(s).
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FESR at finite temperature.

We work with QFT at finite temperature.

SF (T = 0) =
6k +m

k2 −m2 + iε
,

SF (T ) = SF (T = 0) + 2πiδ(k2 −m2)(6k +m)nF (|k0|),

DB(T = 0) =
i

p2 −m2 + iε
,

DB(T ) = DB(T = 0) + 2πδ(p2 −m2)nB(|k0|).

Wilson coefficients acquire explicitly the thermal behavior.

Hadronic parameters develop thermal behaviour (Masses,
coupling constants, resonance’s widths).
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FESR at finite temperature.

The parameter s0 is thermal-dependent.

Qualitative parameter of deconfinement.



Dimuon production from in-medium ρ decays.

Eur. Phys. J. C 61, 711 (2009) by R. Arnaldi, et al.

Vector Meson Dominance (VMD).

ImΠHAD(s) is related with the hadronic spectral function and the latter is
well approximated by the Breit-Wigner form

1

π
ImΠHAD(s) =

1

π

1

f2
ρ

M3
ρΓρ

(s−M2
ρ )2 +M2

ρΓρ
.

Finite Sum Rules at finite temperture.

(−1)N−1C2N 〈O2N 〉=8π2
[ ∫ s0

0 ds sN−1 1
π ImΠHAD(s)− 1

2πi

∮
C(|s0|)

ds sN−1ΠQCD(s)
]
,
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Dimuon production from in-medium ρ decays.

The solution from FESR for all hadronic parameters as a function of T
are the following

Γρ(T ) = Γρ(0)[1−(T/Tc)
3]−1,

Mρ(T ) = Mρ(0)[1−(T/T∗M )10],

fρ(T ) = fρ(0)[1−0.3901(T/Tc)
10.75

+ 0.04155(T/Tc)
1.27].

Temperature behaviour of fρ Temperature behaviour of Γρ
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Dimuon production from in-medium ρ decays.

With the solution from the FESR, we proceed to compute the dimuon
thermal rate in the hadronic phase originating from ρ decays. (We
consider processes where pions annihilate into ρ which in turn decay into
dimuons by means vector dominance.)

dN
d4xd4K

= α2

48π4

(
1+ 2m2

M2

)(
1− 4m2

π
M2

)
×
√

1− 4m2

M2 e
−K0/TR(K,T )ImΠres

0 (M2),



Dimuon production from in-medium ρ decays.

Non-model dependence result but directly from the perturbative
and non-perturbative QCD information.

Invariant dimuon mass distribution comparated to NA60 data.

(Linear scale) Invariant dimuon distribution around ρ-meson peak comparated to NA60 data.
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Backup

QCD Sum Rules was developed more than 30 years ago by
Shifman, Vainshtein and Zakharov (SVZ).

light-quark vector current correlator, which at T = 0 can be
written as

Πµν(q2) = i

∫
d4xeiq·x〈0|T

[
Vµ(x)V†ν(0)

]
|0〉

= (−gµν + qµqν) Π1(q
2),

where Vµ(x) = (1/2)[: ū(x)γµu(x)− d̄(x)γµd(x) :] is the
conserved vector current and qµ is the four-momentum
transfer.

In the thermal perturbative QCD sector, only one-loop
contributions can be taken into account, since the problem of
the appearance of two scales, i.e. the short-distance QCD
scale and the critical temperature Tc, remains unsolved.



Backup

Γρ(0) = 0.145 GeV , Mρ(0) = 0.776 GeV , Tc = 0.197 GeV
and fρ(0) = 5

In order to extend this analysis to finite chemical potencial we
first incorporate the µ dependence into the pQCD sector,
which involves a quark loop. This modifies the corresponding
Fermi-Dirac distribution, splitting it into particle-antiparticle
contributions. And we incorporate the µ dependence of the
critical temperature Tc. For this, we use a Schwinger-Dyson
approach, a parametrization for the crossover transition line
between chiral-symmetry-restored and -broken phases.

Tc(µ) = Tc(µ = 0)− 0.218µ− 0.139µ



Backup

The rate is given by

dN
d4xd4K

= α2

48π4

(
1+ 2m2

M2

)(
1− 4m2

π
M2

)
×
√

1− 4m2

M2 e
−K0/TR(K,T )ImΠres

0 (M2),

where N is the number of muon pairs per unit of infinitesimal space-time
and energy-momentum volume, with xµ the space-time coordinate and
Kµ the four-momentum of the muon pairs, α is the electromagnetic
coupling, m is the muon mass, mπ is the pion mass and M is the
dimuon invariant mass. And

R =
T/K

1− e−K0/T

× ln

[(
e−Emax/T − 1

e−Emin/T − 1

)(
eEmin/T − e−K0/T

eEmax/T − e−K0/T

)]
,



Backup

with

Emax =
1

2

[
K0 +K

√
1− 4m2

π/M
2
]

Emin =
1

2

[
K0 −K

√
1− 4m2

π/M
2
]
.

In order to integrate the dimoun thermal rate, we use

d4K =
1

2
dM2d2K⊥dy

d4x = τdτdηd2x⊥,

where y and η are the momentum-space and coordinate-space rapidities,
respectively and τ =

√
t2 − z2. To relate the temperature change to the

time evolution of the system, we neglect a possible small transverse
expansion, assume it entirely longitudinal, and use the cooling law

T = T0

(τ0
τ

)v2s
,



Backup

where v2
s = 1/3 is the square of the sound velocity for an ideal hadron

gas. The evolution is taken down to a freeze-out temperature Tf . Also,
we consider perfect correlation between η and y (η = y). The invariant
mass distribution becomes

dN

dMdy
= ∆yM

∫ τf

τ0

τdτ

∫
d2K⊥

∫
d2x⊥

dN

d4xd4K
.


