Measurement of the Forward-Backward_ Asymmetry in B^{\pm} Meson Production in ppCollisions at DØ

PRL 114 05813 (2015)

Julie Hogan *Rice University*, now at *Brown University*

International School of Subnuclear Physics – 06.27.15

J. Hogan ISSP 06.27.15 2

DØ Detector

- Run II = 10 years of $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV
- Data: 10.7 fb⁻¹ recorded, this analysis uses 10.4 fb⁻¹ (tracker+muon quality)

- Central tracking: silicon microstrip & fiber trackers
- Liquid argon / uranium calorimeter
- Independent muon tracking

Motivation

- A_{FB} of $t\bar{t}$ production created a lot of interest
 - Early measurements >> SM, still some tension between CDF and SM
 - BSM models to explain excess can also predict $b\overline{b}$ asymmetry \rightarrow same sources

 $t\overline{t}$ forward-backward asymmetry

- This analysis was only the 2^{nd} hadron collider measurement for $b\overline{b}$!
 - LHCb: forward-central asymmetry in mass range around Z peak (PRL 113 082003, 6/2014)
 - CDF: forward-backward asymmetry in $M(b\overline{b}) > 150 \text{ GeV}$; (arXiv:1504.06888, 4/2015) $M(b\overline{b}) > 40 \text{ GeV}$; (CDF Note 11156, 3/2015)

Figures: Ziqing Hong; arXiv:1411.3007; PRL 111 062003 (2013)

- Do heavy quarks have a preference to move in a specific direction?
 - At leading order QCD, no! In higher order $q\bar{q}$ interactions, yes!
- Asymmetry dominated by interference of tree-level and one-loop diagrams which are antisymmetric under $Q \leftrightarrow \overline{Q}$ exchange
 - Proportional to symmetric color factor d_{abc}^2 (Kuhn/Rodrigo PRD **59**, 054017, 1999)
 - Secondary source is interference between ISR and FSR diagrams

Born / Box Interference: $A_{FB} > 0$

System is less perturbed if *Q* color flow follows incoming *q*

ISR / FSR Interference: $A_{FB} < 0$

Radiation requires "deceleration" of color flow – Q prefers to follow incoming \overline{q}

A_{FB} in $b\overline{b}$ Production

• In $p\overline{p}$ collisions, forward = b, $B^{-}(\overline{b}, B^{+})$ following $p(\overline{p})$ direction

$$A_{FB}(B^{\pm}) = \frac{N(-q_B\eta_B > 0) - N(-q_B\eta_B < 0)}{N(-q_B\eta_B > 0) + N(-q_B\eta_B < 0)}$$

- Fully reconstructed B^{\pm} decays tag b/\overline{b} exactly
 - No precision lost to mis-tags, B^0/\overline{B}^0 oscillations
- DØ has many practical advantages:
 - History of precise CPV asymmetry results
 - *pp* initial state
 - reversing magnet polarities
 - extensive μ coverage

Reconstructing $B^{\pm} \rightarrow J/\psi K^{\pm}$

- $\mu^{+}\mu^{-}$ pair (J/ψ) + track $(K^{\pm}) = B^{\pm}$
 - B^{\pm} decay length significance > 3σ
- F/B definition: $q_{\text{FB}} = -q_B \operatorname{sign}(\eta_B)$
 - Ambiguous near $|\eta| = 0$ due to finite resolution
- Rejecting $|\eta_B| < 0.1$ (2% of data) gives:
 - 100% $q_{\rm FB}(MC@NLO B^{\pm}) = q_{\rm FB}({\rm reco} B^{\pm})$
 - 99.5% $q_{\text{FB}}(\text{MC@NLO } b, \overline{b}) = q_{\text{FB}}(\text{reco } B^{\pm})$

sconstructed $\eta(B^{\pm})$

DØ Run II, 10.4 fb⁻¹

 $|\eta|$

- *B*[±] kinematics closely match *b* kinematics:
 - Reco. B^{\pm} vs generated b, \overline{b}
 - A_{FB}(B[±]) affected minimally by hadronization

ISSP

Boosted Decision Tree

- Background taken from data in sidebands
 - Mostly partial reconstruction and combinatoric background
 - Signal MC (leading-order) generated with Pythia
 - Match kinematics as closely as possible with expected data signal (from sideband subtraction) using weights
 - Ex: muon p_T , trigger effects aren't modeled
 - BDT trained using 40 variables:
 - Momenta, decay lengths, impact parameters, pointing angles, vertex fit χ², isolation, and Δφ for several particle pairs
 - Cut on discriminant chosen to minimize $A_{FB}(B^{\pm})$ statistical uncertainty

- Asymmetries in detector or reconstruction of J/ψ or K^{\pm} must be corrected
- Forward-backward asymmetry is a combination of charge asymmetry and "north-south" asymmetry
- Deal with A_C: *w*_{magnet}
 - Equalize N(B[±]) in 4 magnet polarity settings to remove tracking asymmetries
 - Set $N(B^+) = N(B^-)$ to correct for K^{\pm} detector interaction cross-section differences $\rightarrow 1\% A_C$
- Deal with A_{NS} : $w_{J/\psi}w_K$
 - Measure asymmetries in samples without expected production asymmetry
 - set $\varepsilon_{\eta < 0} = \varepsilon_{\eta > 0}$ with a corrective weight, based on event-by-event kinematics
 - Effects on A_{FB}(B[±]) are small: B⁺ and B⁻ on same side have opposite q_{FB}, so A_{NS} corrections mostly cancel

- Asymmetries in the detector or reco of J/ψ or K^{\pm} must be corrected
- Forward-backward asymmetry is a combination of charge asymmetry and "north-south" asymmetry
 North η < 0 | South η > 0
- Deal with A_C: *w*_{magnet}
 - Equalize N(B[±]) in 4 magnet polarity settings to remove tracking asymmetries
 - Set $N(B^+) = N(B^-)$ to correct for K^{\pm} detector interaction cross-section differences $\rightarrow 1\% A_C$
- Deal with A_{NS} : $w_{J/\psi}w_K$
 - Measure asymmetries in samples without expected production asymmetry
 - Set $\varepsilon_{\eta < 0} = \varepsilon_{\eta > 0}$ with a corrective weight, based on event-by-event kinematics
 - Effects on A_{FB}(B[±]) are small: B⁺ and B⁻ on same side have opposite q_{FB}, so A_{NS} corrections mostly cancel

- $A_{NS}(J/\psi)$: prompt $J/\psi \rightarrow \mu^+\mu^-$, measure in bins of $|\eta|$ and p_T
 - Est. 2% *B* decay fraction
 - Low $p_T A_{NS}$ traced to inactive material causing $\langle p_T(\mu) N \rangle > \langle p_T(\mu) S \rangle$
- $A_{NS}(K^{\pm}): \varphi \to K^{+}K^{-}$ decays, bins of leading kaon charge and $|\eta|$
 - A_{NS} is a parameter in simultaneous fits to north and south side data

Maximum Likelihood Fit

- Boosted Decision Tree to reduce background
- Unbinned fit over all *B*[±] candidates

$$LLH = -2\sum_{n=1}^{N} w_n \ln(\mathcal{L}_n)$$

ISSP

$$w_n = w_{\text{magnet}} w_{J/\psi} w_{K^{\pm}}$$

- Events weighted to correct for reconstruction asymmetries (next slides)
- 4 components, each with an event fraction *f* and asymmetry *A*

 $\mathcal{L}_{n} = \alpha \left| f_{S}(1 + q_{FB}A_{S})S(M_{J/\psi K}, E_{K}) + f_{P}(1 + q_{FB}A_{P})P(M_{J/\psi K}, E_{K}) \right|$

$$+ f_T (1 + q_{\rm FB} A_T) T(M_{J/\psi K})$$

+ $[1 - \alpha (f_S + f_P + f_T)](1 + q_{\rm FB}A_E)E(M_{J/\psi K}, E_K)$

Signal: $B^{\pm} \rightarrow J/\psi K^{\pm}$ double Gaussian Pion: $B^{\pm} \rightarrow J/\psi \pi^{\pm}$ shifted double Gaussian Threshold: partial *B* reconstruction Exponential: combinatoric background

Extraction of $A_{FB}(B^{\pm})$

$A_{FB}(B^{\pm}) = [-0.24 \pm 0.41(stat) \pm 0.19(syst)]\%$

- 89328 signal evts / 160360 candidates
- χ^2 / d.o.f = 249 / 214

TABLE I: Summary of uncertainties on $A_{\rm FB}(B^{\pm})$ in data.

ISSP

Source	Uncertainty
Statistical	0.41%
Alternative BDTs and cuts	0.17%
Fit Variations	0.06%
Reconstruction Asymmetries	0.05%
Fit Bias	0.02%
Systematic Uncertainty	0.19%
Total Uncertainty	0.45%

$A_{FB}(B^{\pm})$ Estimate from MC

- 16M QCD $p\overline{p} \rightarrow b\overline{b}X$ events generated with MC@NLO + HERWIG for hadronization
- Identical $B^{\pm} \rightarrow J/\psi K^{\pm}$ selection as in data
 - Add requirement that J/K^{\pm} reconstructed tracks match generated $B^{\pm} \rightarrow J/\psi K^{\pm}$ tracks (leaves only signal)
 - Correct for unmodeled muon trigger effects
 - Correct for MC reconstruction asymmetries
- Systematic uncertainties: PDF, energy scale, fragmentation
 - Renormalization & factorization energy scale variations: 0.44%
 - Fragmentation model variations: 0.25%
 - PDF eigenvector uncertainty shifts: 0.03%

 $A_{FB}(B^{\pm}) = [2.31 \pm 0.34(stat) \pm 0.51(syst)]\%$

$A_{FB}(B^{\pm})$ Estimate from MC

- Also measured in bins of $|\eta|$ and p_T
 - $< p_T(B^{\pm}) > = 12.9 \text{ GeV}$
 - General discrepancy from MC @ NLO
 - 3σ disagreement in inclusive sample

ISSP

- Our conclusion: "...more rigorous SM predictions are need to interpret these results."
- And they came!
 - Consistent with the SM (red) within small uncertainties
 - Also consistent with CDF low and high mass measurements

- Summary
 - First Tevatron measurement of a forward-backward asymmetry in the *b* sector

$$A_{FB}(B^{\pm}) = (-0.24 \pm 0.41 \pm 0.19)\%$$

- Precision reflects DØ's excellent heavy flavor asymmetry program
- Agrees with new SM theory predictions → asymmetry consistent with zero
- Extended and complemented by recent CDF measurements
- After developments of the last two years, there is much less room for new physics to appear in anomalous forward-backward asymmetries!

Summary

• First Tevatron measurement of a forward-backward asymmetry in the *b* sector

06.27.15 16

$$A_{FB}(B^{\pm}) = (-0.24 \pm 0.41 \pm 0.19)\%$$

- Precision reflects DØ's excellent heavy flavor asymmetry program
- Agrees with new SM theory predictions → asymmetry consistent with zero
- Extended and complemented by recent CDF measurements
- After developments of the last two years, there is much less room for new physics to appear in anomalous forward-backward asymmetries!

Backup

References

- DØ analysis: PRL **114** 05813 (2015), arXiv:1411.3021
- $A_{FB}(q\bar{q})$ theory: Kuhn/Rodrigo, PRD **59**, 054017 (1999)
- $A_{FB}(t\bar{t})$ SM prediction: Czakon/Fiedler/Mitov, arXiv:1411.3007
- LHCb measurement: PRL **113**, 082003 (2014)
- CDF measurements:
 - High mass: arXiv:1504.06888
 - Low mass: CDF note 11156
- Theory Predictions
 - $A_{FB}(B^{\pm})$ prediction: Murphy, arXiv:1504.02493
 - New physics models: Grinstein/Murphy, PRL **111**, 062003 (2013)

Reconstructing $B^{\pm} \rightarrow J/\psi K^{\pm}$

- All DØ data from Tevatron Run II, 10.4 fb⁻¹
- $\mu^+\mu^-$ pair (J/ψ) + track $(K^{\pm}) = B^{\pm}$ candidate
- μ^{\pm} : $p_T > 1.5 \text{ GeV}$; $|\eta| < 2.1$
- *K*[±]: $p_T > 0.7$ GeV; $|\eta| < 2.1$
- J/ψ : Mass = 2.7 3.45 GeV
 - Decay length uncertainty < 0.1cm
 - $\cos(2D \text{ Pointing Angle}) > 0$
- B^{\pm} : Mass = 4.0 7.0 GeV
 - decay length significance > 3
 - vertex fit $\chi^2 < 16 / 3$ d.o.f
 - cos(2D Pointing Angle) > 0.8

(more background reduction not shown in the plot)

р

- $A_{NS}(J/\psi)$: prompt $J/\psi \rightarrow \mu^+\mu^-$, measure in bins of $|\eta|$ and p_T
 - identical selection with requirement of low decay length significance
 - Est. 2% *B* decay fraction
- A_{NS} calculated by counting after sideband subtraction in each bin of $|\eta|$
- Low $p_T A_{NS}$ traced to inactive material causing $\langle p_T(\mu) N \rangle > \langle p_T(\mu) S \rangle$ $450 \begin{bmatrix} 100 \\ 400 \end{bmatrix} \quad \boxed{D0, L = 10.4 \text{ fb}^{-1}} \quad \boxed{D0, L = 10.4 \text{$

- $A_{NS}(K^{\pm})$: sample of $\varphi \rightarrow K^{+}K^{-}$ decays selected to reproduce kinematics of kaons in $B^{\pm} \rightarrow J/\psi K^{\pm}$
- Binned by charge and $|\eta|$ of leading kaon
- A_{NS} is a parameter in simultaneous χ^2 fits to north and south side data in each $|\eta|$ bin:

Maximum Likelihood Fit

- Particle masses don't match between north (η < 0) and south (η > 0) sides of the detector: M(north) always < M(south)
 - Ex: $M(J/\psi) \rightarrow \Delta M$ significant based on errors, but small compared to peak width:

- Solenoid field asymmetric along *z*, but not included in the field map
- Solution: signal distribution has a <u>unique parameter set on each side</u>

Maximum Likelihood Fit

- Until the analysis methods were approved, asymmetries were blinded by randomizing sign(η) of the B^{\pm}
- Statistical uncertainty from the fit is 0.41%, confirmed with an ensemble of 1000 trials
- Performance of the algorithm is tested by injecting asymmetries and comparing with fit results

- Large negative asymmetries at low momentum appear to be caused by extraneous detector material asymmetries (cable bunches, etc)
- Excess of low p_T muons on the south side, and that side has lower average $p \rightarrow$ momentum threshold is higher on the north side

06.27.15 25

Reconstruction Asymmetries

- Standard method:
- A(physics) = A(raw) A(reco)
 - 1st order simplification of multiplying efficiencies
 - A(reco) calculated from a weighted average over A_{NS} bins:

$$A_{\rm FB}(\rm reco) = \frac{1}{N} \sum_{\rm bins} n_i A_i$$

- Cross-check → A(reco) agrees with new weight method
- Uncertainty: ~0.13%
 - Directly from A_{NS} errors in A(reco)

• Our method: weight so $\varepsilon_{\eta < 0} = \varepsilon_{\eta > 0}$:

$$w_{\rm north} = \frac{1 - A_{NS}}{1 + A_{NS}}$$

- Event kinematics determine the bin of $A_{NS}(J/\psi)$ and $A_{NS}(K^{\pm})$
- Uncertainty: 0.003%
 - Ensemble of Gaussian variations to A_{NS}

Extraction of $A_{FB}(B^{\pm})$

- Result is stable over time and with B⁺/B⁻ fitted separately
- Background asymmetries also consistent with zero
- $A_{FB}(B^{\pm}) = [-0.24 \pm 0.41(\text{stat}) \pm 0.19(\text{syst})]\%$

- Trained with different background samples or variables
- Mass range, *E_K* dependences, float/fix specific parameters
- Alternate fits, cuts, bins, etc
- Test of injecting asymmetries into blinded data

TABLE I: Summary of uncertainties on $A_{\rm FB}(B^{\pm})$ in data.

Source	Uncertainty
Statistical	0.41%
Alternative BDTs and cuts	0.17%
Fit Variations	0.06%
Reconstruction Asymmetries	0.05%
Fit Bias	0.02%
Systematic Uncertainty	0.19%
Total Uncertainty	0.45%

06.27.15 27

$A_{FB}(B^{\pm})$ Estimate from MC

• Energy scale choice: 0.44%

$$\mu_0 = \sqrt{\frac{1}{2} \left[2m^2(b) + p_T^2(b) + p_T^2(\bar{b}) \right]}$$

- Vary renormalization and factorization scales from $\mu_0/2$ to $2\mu_0$
- Compared to default magnet polarity: $A_{FB}(B^{\pm}) = (1.39 + 0.40)\%$

ISSP

- Fragmentation function: 0.25%
 - Weight $z = p(B)_{\parallel} / p(b)$ to match LEP or SLD tuned Bowler function

$$f_B(z) \propto rac{1}{z^{1+bm_q^2}}(1-z)^a \exp(-bm_T^2/z)$$