High Resolution Scanner for Micropattern Based Cherenkov Detectors (The "Leopard" System)

<u>Gergő Hamar</u>, Dezső Varga *Wigner RCP*, *Budapest*

Outline

- Gaseous detectors
- Micropattern technology
- Examining the microstructure: the Leopard System
- TGEMs : Yield maps, and the hole-gain

Drift field and Critical/Symmetry points

- Applicability for thin GEM foil
- Summary and outlook

Gaseous detectors

- GM, MWPC, TPC, ...
- Well known technique
- Capability for large volumes
- Excellent tracking even in 3D Two track resolution
- dE/dx information
 Particle identification

Applicabe for RICH and TR detectors

Gaseous detectors

- Ionization of gas by charged particles along the tracklet
- Collection of electrons
- High electric field to produce electron avalanche (typically around a thin wire)
- Signal could be read out from neighbouring electrodes (eg. a segmented cathode)

- TPC : measurable drift time \rightarrow 3D tracking
- Main advantages :

Low material budet; Capability for large volume; Cost effective; Applicable for photon detection as well

G.Hamar - MPGD Leopard - Erice 2015

Micropattern detectors

- Problems and limits of wire chambers gain uniformity, sagging, electronic force, strong frames, the wires, imperfections, planarity, ...
- Advancement of PCB- and industrial technologies
- High electric field NOT ONLY around wires

Micropattern detectors

Advantages and Applications of MPGDs

- Flexibility in geometries : tube, sphere, ...
- Higher rate capability !

(CMS and ATLAS upgrades in the forward direction)

- Reduced ion backflow (ALICE TPC upgrade, COMPASS RICH upgrade)
- Fast signal
- Low material budget
- Producable by industry
- RD51 Collaboration (communication, know-how, production test facilities, simulation tools, SRS, ...)
- Examples: TOTEM GEM, KLOE2 CT, PHENIX HBD, FOPI GEM-TPC, ... 2015. June-July
 G.Hamar - MPGD Leopard - Erice 2015

MPGD Based Gaseous Photon Detectors

- Particle identification -> Cherenkov detectors
- Gaseous Photon Detectors for Cherenkov detectors
 - Large area at reasonable price
 - CsI cover for UV photon detection
- Advantages vs. MWPC based RICH
 - Reduction of ion back-flow
 - Fast response
 - High rate capability
 - Possibility for MIP suppression
 - No feed-back photons
- PHENIX, COMPASS, ALICE
- Triple GEM, TGEM, TCPD, TGEM+MM in all: GEM-type photoconverting plate
- Efficiency and microstructure ?? 2015. June-July G.Hamar - MPGD Leopard - Erice 2015

Outline

- Gaseous detectors
- Micropattern technology
- Examining the microstructure: the Leopard System
- TGEMs : Yield maps, and the hole-gain

Drift field and Critical/Symmetry points

- Applicability for thin GEM foil
- Summary and outlook

Microstructure of UV Sensitivity on ThickGEM Surface

- Holes are definitely blind spots
- Inhomogenous extraction field
- Critical symmetry points (and lines)
- Side effects of MIP suppression ?
- Large range for all the geometrical parameters (diameter, pitch, rim, thickness)
- Choise of the filling gas (Methane vs non-flammable)

G.Hamar - MPGD Leopard - Erice 2015

Strategy to Examine the Microstructure

- Single photo-electrons : PE yield and gasgain separation
- Focused UV light
- High resolution mapping
- Combined data acquisition

- **Optimization** (and parametrization) (hole geometry, voltages, gas mixtures, ...)
- Fine tuning for **simulation**
- Quality assurance for production

What could be seen?

like a leopard...

Single ThickGEM Layer ? TCPD Outline (ThickGEM+CCC Photon Detector)

- A known configuration applied for photon detection
- UV-transparent quartz window
- Wire plane for cathode
- ThickGEM Gold plated
- CCC: an optimized MWPC as high gain stage
- Padplane
- Read out : connected wires (or pads)

Optical Setup

- Pulsed UV source : UV LED : SETI UVTOP240 peak: 243 nm, widths: 10nm Photo-electrons from gold surface
- Focusing ball lense cover
- Led Driver Unit adjustable oscillator trigger and LED output
- Pinhole (spot size x 2) 150 µm => 70 µm spot Pinhole 30 µm became just usable
- Quartz window
- Further improvements are still underway

Challenges

- Optical system : 20-100 µm spot size
 => 10⁴ 10⁶ points (spectra)
- Single photo-electrons:
 - < 5% PE / event AND 100-1000 PE / point
 - => thousands of events in each points

Necessary system requirements :

- Efficient focusing of pulsed UV light
- Actuator system (3D) : ~10 μm precision, 10ms response
- Fast ADC : >> 10 kHz
- Combined data acquisition system (ADC and actuator)

Charge Distribution at a Certain Hol

O [adc units]

100000

Data Acquisition : Machine

- Several options tested so far: Camac, PC+LPT
- Recent successfull implementation: RaspberryPi
- Raspberry Pi (is a tiny computer)
 - 700MHz ARM CPU + Broadcom 2835 chip
 - Periferials: USB, HDMI, SD, AV, Audio

GPIO pins (10MHz)

- Low power consumption and low cost
- Raspbian Linux : Debian based OS
- WiFi connection

Data Acquisition : HW + SW

- Special additional board: fits to the GPIO pins
- Parallel-out single ADC (LTC1415)
- **Trigger** reciever and timing (adjustable)
- Signal shaping and amplification (adjustable)
- **Tagging** of rejected triggers
- Direct actuator control

(can be accomodated to any moving controls)

- Software: C,C++ runs on the RPi
- ADC (w DSP), save spectra
- Control 3D table and HV system
- GUI on remote PC (wxWidgets)

G.Hamar - MPGD Leopard - Erice 2

Presently Working Setup

Outline

- Gaseous detectors
- Micropattern technology
- Examining the microstructure: the Leopard System
- TGEMs : Yield maps, and the hole-gain

Drift field and Critical/Symmetry points

- Applicability for thin GEM foil
- Summary and outlook

Setting the Focus

• Fine tuning from the data is essential

Photo-electron Yield Map

- Holes are visible
- Symmetry lines and points are dark
- Ring-like structure
- No azimuthal symmetry around the holes
- Yield varies from hole to hole (even by a factor of two)

Gain Map

- Gain is measured for each measurement point
- Gain is constant in the hexagonal collection zone of a hole (hole-gain)
- Hole-gains vary a lot from hole to hole
- Only slightly correlates with the detected photon yields

The Role of the Drift Field

• High positive:

electrons cannot leave the surface / pushed back

 High negative: electrons are drifting towards the cathode

The Role of the Drift Field

INFN Trieste + WignerRCP Budapest

G.Hamar, F.Tessarotto, S.Levorato, S.Dalla Torre, S.S.Dasgupta, D.Varga

Normal GEM

- Is it possible to study the microstructure of a normal thin GEM foil (with holes of 70µm) ?
- Precision of 10-20 µm is needed
- Is gold cover necessary?

- Pinhole of 30 um was installed
- Standard copper covered normal GEM has been checked for the first time ...

Normal GEM

PE Yield Map near the Edge of the GEM

Edge of the GEM

Gain Map near the Edge of the GEM

Defining Holes

- Same methodes as for TGEMs
- Define dark points (dark yield is shifted due to non negligible backgroud)
- Clusterize dark points (hole candidates)
- Define hole area (closest point)
- Compute "hole-gain" and/or other hole-level quantities

Defining Holes

Hole-gain

- Hole-gain distribution : sigma < 5% in the sample
- Larger gain along the edge (higher surface charge on the metal border?)

Hole-Gain near the Edge of the GEM

Summary

- Micropattern based Cherenkov detectors
- Leopard System
 - Single MPGD (with a postamplification stage)
 - Focused UV light mounted onto a moving table
 + a fast controlling and DAQ part with RaspberryPi
- Detailed ThickGEM Studies
 - Hole-by-hole variations, inhomogenities
 - Hole-gain structure, uniformity evaluation
- Optimization and Finetune simulations and QA for production
- Normal GEM foils became accessible

Backup slides

Future Plans

- Detailed studies on different geometries and applicable gases with TGEMs
- Correlation with optical checks, and with production procedures and failures.
 A new device for Quality Assurance ?
- Exploration of the microstructure on thin GEM foils
- Fine tuning input for simulations

Speed : 20 min run

DAQ rate : 120 kHz achieved with 99.5 % events accepted

2015. June-July

Fast 2D Map (20 minutes) Photo-electron Yield ۲ [mm]

X [mm]

DAQ Scheme

Gain calibration of the MWPC section

- Single TGEM exploration
- Underlying structure (post amplification MWPC stage) is measureable via shining through the holes

G.Hamar - MPGD Leopard - Erice 2015

Stability

- **Regular remeasuring** of a given region near a hole
- UV LED yield slightly varies with time
- Gain roughly stable
- Actuator system : $+/-20 \mu m$ through a day, on a 1 mm range

The system is stable enough to perform long measurements

Budapest + Trieste measurements

- RD51 Common Project
- COMPASS RICH upgrade
- TGEM + MM Hybrid for low ion back-flow and high gain operation
- Study of candidated geometries in Ar/CH4 mixture
- Behaviour of the Critical/Symmetry Points

Crew: Gergő Hamar, Fulvio Tessarotto, Stefano Levorato, Silvia Dalla Torre, Shuddha Shankar Dasgupta, Dezső Varga

The Role of Drift Bias

Drift field scan along the critical line

Charge Up ...

- Single hole charge up became possible
- Gain drops while PE yield increases !
- Effect on : single point / single hole / full segment ?
- Charge-up during scanning measurements

Actuator System

- Stepping motors for all axis
- Good resolution : 2.5 μm
- Direct control
- Mounted upside-down on a support table

Larger (20cm) and faster version became ready recently

G.Hamar - MPGD Leopard - Eric

