

Testing quantum mechanics in Collider Experiments

Prog. Theor. Exp. Phys. (2013) 063A01, arXiv: 1302.6438

in collaboration with Y. Nakaguchi (IPMU, UTokyo)

Shion Chen The Univ. of Tokyo

EMFCSC International School of Subnuclear Physics

28 Jun. 2015, Erice

Introduction

<u>Open questions of quantum mechanics</u>

- Interpretation of undeterministicity
- Description of measurement
- Non-locality

Einstein-Podolsky-Rosen (EPR, 1930)

- Consider an entangled state where two spin 1/2 particles run back-to-back
- Spin measurement on particle 1
- Particle-2's state reduces in accordance with that of particle-1 with no timing delay
- even if they are specially localized

A. Einstein

B. Podolsky

N. Rosen

Analysis through Bell's inequality

(~1960)

• Can classical theory have an equivalent description as QM?

e.g. Introduce "hidden variables" \rightarrow recover local & deterministic physics

 $E(\boldsymbol{a},\boldsymbol{b}) := \langle AB \rangle$

A, (B): measured value of spin 1 (2)

with the measurement axis being a(b)

when 2 meas. are in a space-like timing

Analysis through Bell's inequality

(~1960)

• Can classical theory have an equivalent description as QM?

e.g. Introduce "hidden variables" \rightarrow recover local & deterministic physics

Classical limit: $S_C \le 2$ $S \ge 2 \Rightarrow$ exclusion of local reality Quantum limit: $S_Q \le 2\sqrt{2}$ $- \log QM: S \le 2$ \Rightarrow Inclusive non-locality test

15年6月28日日曜日

Necessary components for the test

- Spin analyser
- Entangled state
- Bell's inequality

Spin analyser

"polarimeter decay"

Weak decay gives rise asymmetry w.r.t the parent particle polarization

⇒ measure the spins though angular distribution of final state particles

$$rac{d\Gamma}{d\Omega} \propto 1 + lpha m{s} \cdot m{n}$$
 "asymmetric paramet

'asymmetric parameter'' performance as a polarimeter

- Considering available statistics, Λ, τ decays are promising

	α
Λ→рπ	-0.642±0.013
$\Lambda \rightarrow n\pi_0$	-0.648±0.045
$\Sigma^+ \rightarrow p \pi_0$	-0.98±0.016
$\tau \rightarrow l \nu \nu$	0.33
τ→πν	1
τ→ϱν	0.46

Source of entanglement state

Bell's inequality for our setup

<u>e.g. cc $\rightarrow \Lambda \overline{\Lambda} \rightarrow p \pi p \pi$ </u>

 $\Lambda\overline{\Lambda}$ polarization

Chen et. al. (2013)

s, s': polarization vector of $\Lambda\overline{\Lambda}$ n, n': direction of Π -, Π + @ Λ rest frame n_a : projection onto a

$$\begin{split} |\langle s_a \, s'_b \,\rangle + \langle s_a \, s'_d \rangle + \langle s_c \, s'_b \rangle - \langle s_c \, s'_d \rangle | &\leq 2 \\ \frac{d\Gamma}{d\Omega} \propto 1 + \alpha s \cdot n \\ \hline \Pi + \Pi - \text{ direction} \\ Q &= |\langle n_a n'_b \rangle + \langle n_a n'_d \rangle + \langle n_c n'_b \rangle - \langle n_c n'_d \rangle | &\leq \frac{2\alpha_{\Lambda}^2}{9} \end{split}$$

Fix a-d s.t. Q is maximized

$$\lambda_{1,2}$$
: largest 2 eigen values of C^TC

$$P_{\max} = 2\sqrt{\lambda_1 + \lambda_2}$$

$$C = \frac{9}{2\alpha^2} \begin{pmatrix} \langle n_x n'_x \rangle & \langle n_x n'_y \rangle & \langle n_x n'_z \rangle \\ \langle n_y n'_x \rangle & \langle n_y n'_y \rangle & \langle n_y n'_z \rangle \\ \langle n_z n'_x \rangle & \langle n_z n'_y \rangle & \langle n_z n'_z \rangle \end{pmatrix}$$

Bell inequality $Q_{\max} \leq 1$ (Quantum limit: $\sqrt{2}$)

QM prediction

- LO matrix element + measured form factors

Bell's inequality: $Qmax \leq I$

channel	χс0→ΛΛ	ηϲ→ΛΛ	J/ψ→ΛΛ	ее→ү*→тт	ее→Ζ→тт	Н→тт
Qmax	√2	√2	0.976±0.048	$\frac{\sqrt{5 - 2\Gamma + 2\Gamma^2}}{2 + \Gamma}$ $\Gamma := (2m_\tau/\sqrt{s})^2$	√5/2	√2
violation	\bigcirc	\bigcirc	×?	1	\bigcirc	\bigcirc

 \bigcirc with \sqrt{s} s>8.6 GeV, max: $\sqrt{5/2}$

Experimental feasibility

Requirements

- Λ, τ rest frame can be reconstructed
 Since observables are all defined in the frame
- Low BG level

e+e- colliders: () hadron coll.: ×?

 Statistics is needed for confirmation of violation

$\eta_c, \chi_{c0} \rightarrow \Lambda \Lambda \rightarrow p \pi p \pi$

Candidates: BES3, CLEO

Assuming Eff. ~ 20-30%, BG < 0.5%

(→backup)

 $2-3.5\sigma$ significance is already feasible!

Expected events @BES3

12000evt × eff (η_c channel)

4000evt × eff (χ_{co} channel)

Candidates: Belle, Babar, LEP, ILC?

Belle: $\sqrt{s}=10.58 \text{ GeV}$ (Qmax=1.03; LO)

ILC: $\sqrt{s}=250-500 \text{ GeV}$ (Qmax~1.11; LO)

Belle: need to update calculation (Qmax=1.03) ILC: $2-3\sigma$ ok

Summary

- Test quantum locality in high energy colliders in untested method & systems
- through Bell's inequality

Thanks for the attention!

Backup

Optical exp.		Efficiency LH	Locality LH	significance
A.Aspect et. al. (1981)	photon	×	×	5σ
Weihs et. al. (1998)	photon (400m)	×	\bigcirc	>I0o
Rowe et. al. (2001)	ions	\bigcirc	×	>I0o
Particle exp.				
CPLEAR@CERN (1999)	Κο-Κο	×	\bigtriangleup	~30
Sakai et.al @RHIC (2006)	P-P	\bigcirc	\bigtriangleup	~30
Belle@KEK (2007)	Bo-Bo	×	×	3-4σ
Tornqvist, Baranov, Chen	ΛΛ, ττ	×	\bigtriangleup	2~3σ

Space-time Separation of $\Lambda\overline{\Lambda}$

- $\Lambda(\overline{\Lambda})$ decay ~ spin measurement
- Fraction of events with space-like separated decays events:

 $\omega = 2 \, \int_0^\infty dt_1 \, \int_{t_1}^{\frac{1+\beta}{1-\beta}t_1} dt_2 \, \frac{1}{\tau} e^{-\frac{t_1}{\tau}} \frac{1}{\tau} \, e^{-\frac{t_2}{\tau}} = \beta. \quad \text{(A, Abar decay time : } t_1, t_2 \text{)}$

	η_c	χ_{c0}	J/ψ
β	0.663	0.757	0.693

space-time separation condition:

$$l_1 + l_2 > c |t_1 - t_2| = \frac{1}{\beta} |l_1 - l_2|$$