Direct photon production in heavy ion collisions: Increased $q - \overline{q}$ photon production at hadronization

Sarah Campbell

<<Ettore Majorana>> International School

of Sub-nuclear Physics

The Erice Center – June 27, 2015

- Photon production and direct photon puzzle
- Increased photon production at confinement
- Conclusions

Direct photon sources

Free streaming hadrons

Quark Gluon Plasma Thermal photons Pre-equilibrium phase Strong field – Glasma? Initial hard scattering **Prompt photons**

Hadron Gas

Pre-equilibrium photons?

Thermal photons

Direct photon p_T spectrum

Direct photon p_T spectrum

Direct photon puzzle

Looks like late emission Direct photon $v_2 \sim pion v_2$

Photon production from q-q at hadronization

Could similar soft gluon interactions lead to an increase in $q - \overline{q}$ photon production as the system becomes color neutral?

This mechanism could produce MANY MANY photons

Two component model

Prompt photons at high p_T

Late-stage $q - \overline{q}$ photons dominate at low p_T

- → Should see n_q -scaling of v_2 with $n_q = 2$
- → Can this source describe the shape of the excess p_T yield?
- → Can this source reproduce the v_2 at low p_T ?

8

Data-driven Monte Carlo

1st quark:

1.) Randomly pick r^2, ϕ, η from flat distributions

2.) Randomly pick m_T \rightarrow 3.) Calculate v₂ from p_T \rightarrow 4.) Randomly pick φ

2nd, 3rd quarks: 5.)

5.) Assume at the same Blast Wave Distrib. as 1st quark
6.) Repeat steps 2-4 for 2nd, 3rd quark

Make pairs:

7.) Apply co-moving requirements (PRC 68 034904 (2003))8.) Bring on mass shell, conserve KE

Higher orders of v_n

Sensitive to fluctuations in the initial energy distributions in the nuclei

Modified n_q -scaling $v_n/n_q^{n/2}$ This scaling should extend to direct photons with $n_{q\gamma} = 2$ Schenke, Jeon and Gale PRL 106 042301 (2011)

Results in 0-20% $\sqrt{s_{NN}}$ = 200 GeV Au+Au

Results in 20-40% $\sqrt{s_{NN}}$ = 200 GeV Au+Au compared with other models

$\chi^2 / NDF = 35.12/22 = 1.60$

$v_4 \{\psi_4\}$ and $v_4 \{\psi_2\}$ Predictions

Conclusions

$\mathcal{J}_{s} \quad q - \overline{q}$ photon production at confinement describes the direct photon p_{T} shape and large v_{2} values

For more information see arXiv:1504.01654 – In press at PRC

Backup

Future improvements

Data-Data Calculation

- v_{2h}/n_q from π , K, p identified hadron data
- $\Delta KE_T/n_q < 0.1$
- NDF changes with $n_{q\gamma}$, χ^2 discontinuous

Data-Fit Calculation

- v_{2h}/n_q from fit to π , K, p identified hadron data
 - Use probability density function of Gamma distribution,

 $G(x) = A \frac{((x-\mu)/\beta)^{\gamma-1} e^{-1(x-\mu)/\beta}}{\beta \Gamma(\gamma)}$

 TMinuit simultaneous fit to 0-20% and 20-40%

χ^2 Results

	$\sigma_{\gamma} = \sigma_{stat} \oplus \sigma_{sys}$		$\sigma_\gamma = \sigma_{stat}$	
HEADING	$n_{q\gamma} \pm (stat)$	$n_{q\gamma} = 2$	$n_{q\gamma} \pm (stat) \pm (sys)$	$n_{q\gamma} = 2$
Data, Range 1	$1.79\substack{+0.08\\-0.27}$	2σ	$1.79\substack{+0.002+0.67\\-0.01-0.72}$	1σ
Data, Range 2	1.79 ± 0.27	1σ	$1.79\substack{+0.002+1.09\\-0.01-0.72}$	1σ
Fit, Range 1	1.59 ± 0.22	2σ	$1.79 \pm 0.02^{+0.85}_{-0.68}$	1σ
Fit, Range 2	1.83 ± 0.44	1σ	$1.88 \pm 0.07^{+1.18}_{-0.71}$	1σ

Optimal value of n_{qγ} = 1.8
 → Need reduced systematic errors

Data is consistent with the $n_{q\gamma} = 2$ hypothesis

Hadronic flow

Coalescence Model

- Quarks: $dN/d\phi \sim 1 + 2v_{2,q}(p_T) \cos(2\phi)$
- Mesons: $v_2(p_T) = 2v_{2,q}(p_T/2)$

M

q

q

- Baryons: $v_2(p_T) = 3v_{2,q}(p_T/3)$
- Assumes co-moving quarks of same momentum

$$-p_{T,M} \rightarrow 2p_{T,q} \qquad p_{T,B} \rightarrow 3p_{T,q}$$

- Momentum conservation maintained by mean-field interaction
- Quarks close in phase space

Compare n_q -scaled v_2 for γ and hadrons

- $\chi^2 = \sum_{c,h,pT/nq} (v_{2,\gamma}/n_{q,\gamma} v_{2,h}/n_{q,h})^2 / (\sigma_{\gamma}^2 + \sigma_{h}^2)$
 - Sum over centrality, hadron for each γ data point in p_T/n_q

$$-\sigma^2 = \sigma_{sys}^2 + \sigma_{stat}^2$$

- Match $v_{2,\gamma}$ and $v_{2,h}$ points so $p_{T,\gamma}/n_{q,\gamma} \sim p_{T,h}/n_{q,h}$ - Need to be within 0.1 to be a match
- NDF = # points 1 parameter $\rightarrow n_{q,\gamma}$
 - As changes $n_{q,\gamma}$, NDF changes
- Find $n_{q,\gamma}$ at minimum χ^2/NDF
 - $n_{q,\gamma}$ error range from $\chi^2/NDF + 1$
- Alternate comparison: use KE_T/n_q to match

Find optimal
$$n_{q\gamma}$$
 using χ^2

$$\chi^2 = \sum_{Cent. \pi, K, p} \sum_{K E_T/n_q} \frac{(v_{2\gamma}/n_{q\gamma} - v_{2h}/n_q)^2}{(\sigma_{\gamma}/n_{q\gamma})^2 + (\sigma_h/n_q)^2}$$
The only free parameter

Data-Data Calculation

• v_{2h}/n_q from π , K, p identified hadron data

Data-Fit Calculation

• v_{2h}/n_q from fit to π , K, p identified hadron data

Find optimal $n_{q\gamma}$ using χ^2 $\chi^2 = \sum_{Cent. \pi, K, p} \sum_{KE_T/n_q} \frac{(v_{2\gamma}/n_{q\gamma} - v_{2h}/n_q)^2}{(\sigma_{\gamma}/n_{q\gamma})^2 + (\sigma_h/n_q)^2}$

The only free parameter

Data-Data Calculation

- v_{2h}/n_q from π , K, p identified hadron data
- $\Delta KE_T/n_q < 0.1$
- NDF changes with $n_{q\gamma}$, χ^2 discontinuous

Data-Fit Calculation

• v_{2h}/n_q from fit to π , K, p identified hadron data

Data-Data Results

Data-Fit Calculation

Simultaneous fit to 0-20% and 20-40% with TMinuit

Uncorrelated sys errors Fully-correlated sys errors

	$\sigma_\gamma = \sigma_{stat} \oplus \sigma_{sys}$		$\sigma_\gamma = \sigma_{stat}$	
HEADING	$n_{q\gamma} \pm (stat)$	χ^2/NDF	$n_{q\gamma} \pm (stat) \pm (sys)$	χ^2/NDF
Data, Range 1	$1.79\substack{+0.08 \\ -0.27}$	4.85/20 = 0.24	$1.79\substack{+0.002+0.67\\-0.01-0.72}$	101.6/20 = 5.1
Data, Range 2	1.79 ± 0.27	4.53/17 = 0.27	$1.79\substack{+0.002+1.09\\-0.01-0.72}$	99.5/17 = 5.9
Fit, Range 1	1.59 ± 0.22	3.51/13 = 0.26	$1.79 \pm 0.02^{+0.85}_{-0.68}$	44.67/14 = 3.19
Fit, Range 2	1.83 ± 0.44	1.55/5 = 0.31	$1.88 \pm 0.07^{+1.18}_{-0.71}$	34.14/6 = 5.68
$\chi^2/NDF < 1$		χ²/NDF > 1		

→ over-estimating uncorrelated errors → under-estimating uncorrelated errors

Need systematic errors separated in correlated and uncorrelated types to interpret χ^2 /NDF values.

χ^2 Results

		• 1		
	$\sigma_{\gamma} = \sigma$	$_{stat}\oplus\sigma_{sys}$	$\sigma_{\gamma} =$	σ_{stat}
HEADING	$n_{q\gamma} \pm (stat)$	$n_{q\gamma} = 2$	$n_{q\gamma} \pm (stat) \pm (sys)$	$n_{q\gamma} = 2$
Data, Range 1	$1.79\substack{+0.08\\-0.27}$	2σ	$1.79\substack{+0.002+0.67\\-0.01-0.72}$	1σ
Data, Range 2	1.79 ± 0.27	1σ	$1.79\substack{+0.002+1.09\\-0.01-0.72}$	1σ
Fit, Range 1	1.59 ± 0.22	2σ	$1.79 \pm 0.02^{+0.85}_{-0.68}$	1σ
Fit, Range 2	1.83 ± 0.44	1σ	$1.88 \pm 0.07^{+1.18}_{-0.71}$	1σ
Range 1: KE _T /n _q < 1 Ge' Range 2: KE _T /n _g < 1.7 G	V in 20-40% GeV in 0-20%	0.15 (e) 0.10 0.10 0.05		
KE _T /n _q < 1 Ge	V in 20-40% Sarah Ca	0.00 v ₂ /n _q *1.6 for -0.05 0 1 2 ampbell Erice K	0-20% 3 4 5 1 E _T /n _q (GeV/c)	2 3 4 5 KE _T /n _q (GeV/c) 33

Blast Wave m_T Distrib

From Physical Review C 48, 2462 (1993):

where T is the temperature,

$$m_T = \sqrt{p_T^2 + m_q^2}$$

$$\rho = atanh \left(\beta_S \left(r/\dot{R}\right)^{\alpha}\right)$$

From PRD 89 026013 (2005):

$$m_q = 300 \text{ MeV}$$

T = 106 MeV
R = 8.5 fm
 $\beta_s = 0.75$
 $\alpha = 1$ $<\beta>= 0.5$

Sarah Campbell -- Erice

Comoving requirements

From probability functions in PRC 68 034904 (2003):

Mesons

$$f_{M}(x_{1},x_{2};p_{1},p_{2}) = \frac{9\pi}{2(\Delta_{x}\Delta_{p})^{3}}\Theta(\Delta_{x}^{2} - (x_{1} - x_{2})^{2})\Theta(\Delta_{p}^{2})$$
$$-\frac{1}{4}(p_{1} - p_{2})^{2} + \frac{1}{4}(m_{1} - m_{2})^{2}), \quad (3)$$

where Δ_x and Δ_p are the covariant spatial and momentum coalescence radii, and they are related by the uncertainty

$$\begin{aligned} |x_1 - x_2| &< \Delta x \\ |p_1 - p_2| &< 2\Delta p \end{aligned}$$

$$\Delta x_M = \Delta x_B = 0.85 \text{ fm}$$

 $\Delta p_M = \Delta p_B = 0.2 \text{ GeV/c}$
 $m_1 = m_2 = m_3$

Baryons

$$f_{B}(x_{1}, x_{2}, x_{3}; p_{1}, p_{2}, p_{3})$$

$$= \frac{9\pi}{2\Delta_{x}^{3}\Delta_{p}^{3}}\Theta\left(\Delta_{x}^{2} - \frac{1}{2}(x_{1} - x_{2})^{2}\right)$$

$$\times \Theta\left(\Delta_{p}^{2} - \frac{1}{2}(p_{1} - p_{2})^{2}\right)\frac{9\pi}{2\Delta_{x}^{3}\Delta_{p}^{3}}$$

$$\times \Theta\left(\Delta_{x}^{2} - \frac{1}{6}(x_{1} + x_{2} - 2x_{3})^{2}\right)$$

$$\times \Theta\left(\Delta_{p}^{2} - \frac{1}{6}[(p_{1} + p_{2} - 2p_{3})^{2} - \frac{1}{6}(x_{1} - x_{2})^{2}\right)$$

$$\begin{split} |x_1 - x_2| &< \Delta x \sqrt{2} \\ |x_1 + x_2 - 2x_3| &< \Delta x \sqrt{6} \\ |p_1 - p_2| &< \Delta p \sqrt{2} \\ |p_1 + p_2 - 2p_3| &< \Delta p \sqrt{6} \end{split}$$

Kinetic energy conservation

Kinetic energy conservation best reproduced the n_q-scaling seen in the data

Gluon's energy component

Sarah Campbell -- Erice

p_T shape: Inverse slopes

Fit p_T shape with exponential, $Ae^{-p_T/T}$

Centrality	p_T range	Monte Carlo	Au+Au data $[2, 3]$
0-20%	$0.6 < p_T < 2.0 \text{ GeV/c}$	233 ± 6	$239\pm29\pm7$
0-20%	$1.0 < p_T < 2.2~{\rm GeV/c}$	251 ± 8	$221 \pm 19 \pm 19$
20-40%	$0.6 < p_T < 2.0~{\rm GeV/c}$	233 ± 8	$260\pm33\pm8$
20-40%	$1.0 < p_T < 2.2 ~{\rm GeV/c}$	251 ± 10	$217 \pm 18 \pm 16$

Can this source describe the shape of the excess p_T yield? \rightarrow Inverse slopes are consistent with values from data

Sarah Campbell -- Erice

0-20% v₂

20-40% v₂

At low p_T

With preliminary results

Sarah Campbell -- Erice

Direct photon v₃ modified n_q-scaling

44

A Few Theories

- Delayed QGP formation
- Magnetic fields
- Initial state Glasma effects
- Hydrodynamic models
- In HG: baryon-baryon, meson-baryon interactions

Chun: Hydro

fireball

v2/v3

Magnetic field contribution?

FIG. 2: The red(dot-dashed) and blue(dashed) curves correspond to the v_2 of the photons with in-plane and out-plane polarizations, respectively. The black(solid) curve correspond to the one from the averaged emission rate of two types of polarizations. Here we consider the contribution from massless quarks at $B_z = 1(\pi T)^2$.

FIG. 3: The colors correspond to the same cases as in Fig.2. Here we consider the contributions from solely the massive quarks with m = 1.143 at $B_z = 1(\pi T)^2$.

Sarah Campbell -- Erice

Also seen at LHC in ALICE

