«ETTORE MAJORANA» FOUNDATION AND CENTRE FOR SCIENTIFIC CULTURE

INTERNATIONAL SCHOOL OF SUBNUCLEAR PHYSICS

24 June to 3 July 2015

This year's school will present several highlight talks about LHC

Sergio Bertolucci will talk about LHC Peter Jenni will lecture about the Roadmap at LHC to the Higgs boson and beyond We will hear presentations about CMS – ALICE - LHCb Lucio Rossi will present the High-Luminosity LHC Project

«ETTORE MAJORANA» FOUNDATION AND CENTRE FOR SCIENTIFIC CULTURE

INTERNATIONAL SCHOOL OF SUBNUCLEAR PHYSICS

24 June to 3 July 2015

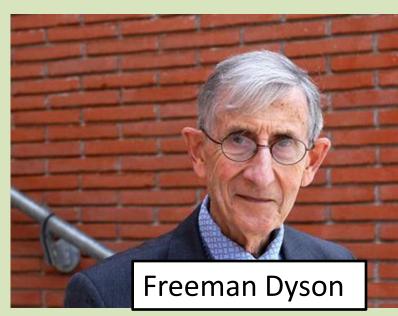
The LAA impact on technology R&D: from past to future.

Horst Wenninger, CERN

References:

CERN Photo Library (copy rights), CERN webpages, CERN current long-term plan, CERN lecture programs, LHCC meetings, AB talks, ISSP2013 (ERICE), EPS Technology & Innovation Workshop (ERICE 2012) private communications CERN staff and many more

6/25/2015


ISSP 2015 - H.Wenninger

On Tools and Instrumentation

"New directions in science are launched by new tools much more often than by new concepts.

The effect of a concept-driven revolution is to explain old things in new ways.

The effect of a tool-driven revolution is to discover new things that have to be explained"


unification of the three versions of quantum electrodynamics Feynman, Schwinger and Tomonaga 65 Nobel Prize

Courtesy: Werner Riegler CERN lecture

The LAA impact on technology R&D: from past to future.

LAA project was implemented to prepare "a tool-driven revolution to discover new things that have to be explained"

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

1

CERN-EP/87-122 July 14th, 1987

The LAA Project

by

A. Zichichi CERN – Geneva Switzerland

Geneva, 14 July 1987

Abstract.

A comprehensive R & D project to study new experimental techniques for the next step in multiTeV hadron collider physics is described.

(to be published in ICFA - INSTRUMENTATION BULLETIN)

This project represents a unique opportunity for Europe to have a leading role in the advanced technology for High Energy Physics.

It is open to all physicists and engineers who are interested in participating. 6/25/2015 ISSP 2015 - H.Wenninger 5 LAA was the first **special** program at CERN dedicated to prepare the future beyond the ongoing CERN LEP construction program 1980 to 1989

Unlike all previous CERN projects (PS, BOOSTER, BEBC, ISR, SPS) LEP approval: conditional to stay within the CERN budget level

- priorities required –

Facilities and many experiments closed to free resources for LEP construction + the proton-antiproton runs

The idea behind LAA

develop tools (technologies / detectors) for experiments in view of a high intensity proton-proton collider in the LEP tunnel as discussed at least since 1984

Use LAA funds to hire dedicated staff (physicist, engineers, technicians) and form collaborations supported by LAA to prepare the future beyond LEP

40 LAA staff and 80 unpaid scientist worked together for 6 years LAA activities are published in over 350 papers and journals

after LEP start during the1990th the **CERN DRDC** complemented **LAA**

R&D CERN 2015

PLAFON	D Platform for Developing Neutrino Detectors	
RD-18	CRYSTAL CLEAR R&D on scintillation materials	
	for novel ionizing radiation detectors for HEP,	
	medical imaging and industrial applications	
RD39	Cryogenic Tracking Detectors	
RD42	Development of Diamond Tracking Detectors for	
	High Luminosity Experiments at the LHC	
RD50	Development of Radiation Hard Semiconductor	
	Devices for Very High Luminosity Colliders	
RD51	Development of Micro-Pattern Gas Detectors	
RD52	Dual-Readout Calorimetry for Energy Measurements	
RD53	Development of pixel readout integrated circuits for extreme	
	rate and radiation	

GEMs & MICROMEGAS

MICROMEGAS Narrow gap (50-100 μm) PPC with thin cathode mesh Insulating gap-restoring wires or pillars

GEM Thin metal-coated polymer foils 70 µm holes at 140 mm pitch

The **RD51** collaboration involves ~ 450 authors, 75 Universities and Research Laboratories from 25 countries in Europe, America, Asia and Africa.

more recently other micro pattern detector schemes, offers the potential to develop new gaseous detectors with unprecedented spatial resolution, high rate capability, large sensitive area, operational stability and radiation hardness.

Y. Giomataris et al, Nucl. Instr. and Meth. A376(1996)239

RD 52

Dual (triple) readout method

Basic principle:

- •Measure EM shower component separately
- •Measure HAD shower component separately
- Measure Slow Neutron component separately

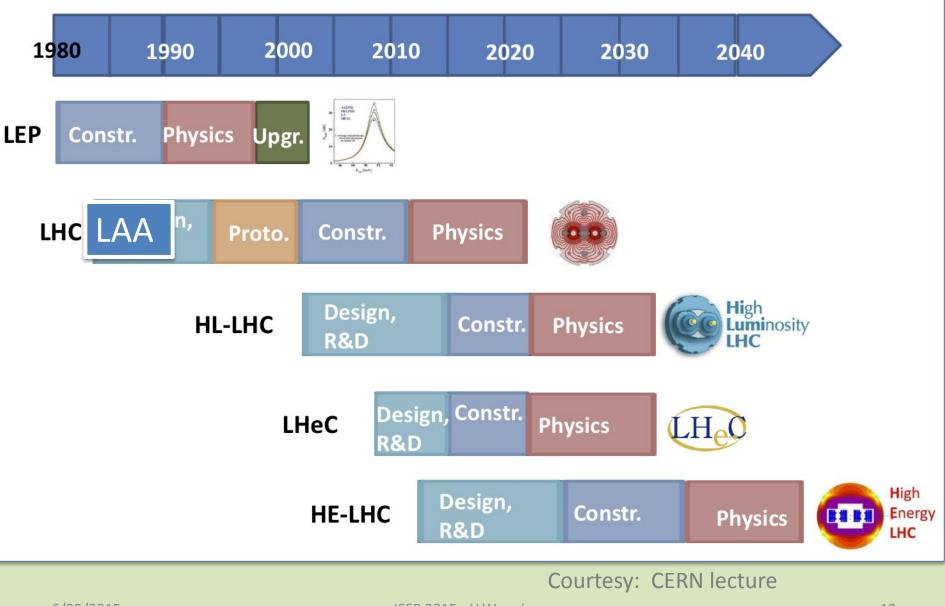
Triple

Dual

EM-fraction=> electrons => highly relativistic => Cherenkov light emission as well as Scintillation signal

HAD-fraction=> "less" relativistic => Scintillation signal only

Slow neutrons => late fraction of the Scintillation signal


Lucie Linssen 22/7/2009

Why is the title of the talk:

LAA impact on technology R&D: from past to future:

 What is the importance of a special programme and R&D fund provided by Italy to CERN
 implemented by the CERN Council in 1986 at CERN
 Project Leader Prof. A. Zichichi.

Why should this have an impact not only on past but even on present & future activities?

Examples of LAA R&D topics: the spaghetti electromagnetic calorimeter, calorimetry, multi-drift chambers, scintillation fibre trackers, micro-strip detectors, precision tracking and read-out electronics, IPSA tube GaAs crystals (Imaging Silicon Pixel Array), silicon pixels detectors, CMOS chips and ASIC/VLSI chips - RPCs

LAA impact on LHC: through people engineers, physicists, technicians, recruited for the LAA activities, helped LHC experiments and participate in the experiments still today.

LAA impact on LHC: through technology, in particular: built-up of competences in micro-electronics , CMOS chips, ASIC/VLSI chips, micro-strip-, silicon pixel development ...

LAA spin-offs – one example: Medipix 1st phase

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN/EF 89–14 CERN/LAA/SD 89–11 13 September 1989

PROGRESS REPORT 1988–1989

DEVELOPMENT OF INTEGRATED CMOS CIRCUITS AND SILICON PIXEL DETECTORS IN THE CERN-LAA PROJECT

F. Anghinolfi, P. Aspell, M. Campbell, E.H.M. Heijne, P. Jarron and G. Meddeler CERN, EF-Division, Geneva, Switzerland

> Ch.C. Enz and F. Krummenacher LEG–EPFL, Lausanne, Switzerland

L. Moult and P. Sharp Rutherford Appleton Laboratory, Chilton-Didcot, UK

> A. Olsen Senter for Industriforskning, Oslo, Norway

Abstract

CERN has often been the incubator for the development of innovative technologies but very few people know about the **capacitive touch screens** invented for the consoles of the SPS Control Room in 1973. The inventor, Bent Stumpe, who also developed the CERN **tracker ball and the computer-programmable knob**.

Available online at www.sciencedirect.com

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH Scotter A

Nuclear Instruments and Methods in Physics Research A 533 (2004) 183-187

www.elarvier.com/locate/nima

NINO: an ultra-fast and low-power front-end amplifier/discriminator ASIC designed for the multigap resistive plate chamber*

F. Anghinolfi^a, P. Jarron^a, A.N. Martemiyanov^b, E. Usenko^c, H. Wenninger^a, M.C.S. Williams^{d,*}, A. Zichichi^{d,e}

> "EP Division, CERN, Geneva, Switzerland "Institute for Theoretical and Experimental Physics, Moscow, Russia "Institute for High Energy Physics, Proteino, Russia "Sectore DNFN, Bologna, Italy "Dipartimento di Fizica dell'Università, Bologna, Italy

> > Available online 28 July 2004

Abstract

For the full exploitation of the excellent timing properties of the Mutigap Resistive Plate Chamber (MRPC), frontend electronics with special characteristics are needed. These are (a) differential input, to profit from the differential signal from the MRPC (b) a fast amplifier with less than 1 ns peaking time and (c) input charge measurement by Time-Over-Threshold for slewing correction. An 8-channel amplifier and discriminator chip has been developed to match these requirements. This is the NINO ASIC, fabricated with 0.25 µm CMOS technology. The power requirement at 40 mW/channel is low. Results on the performance of the MRPCs using the NINO ASIC are presented. Typical time resolution a of the MRPC system is in the 50 ps range, with an efficiency of 99.9%.

PACS: 2940.G; 84.30.-c; 84.30.Lc; 84.30.Qi

Keyword:: Resistive plate chambers; ALICE; Timo-of-flight; Fast amplifier; Discriminator; ASIC; CMOS technology

The original idea of the LAA project to perform technology R&D

as an independent research program with its own, independent funding

has meanwhile been adopted for present and future R&D initiatives

LONG TERM ACCELERATOR R&D AS INDEPENDENT RESEARCH FIELD

R. Brinkmann, DESY, D-22607 Hamburg, Germany Proceedings of IPAC2014, Dresden, Germany

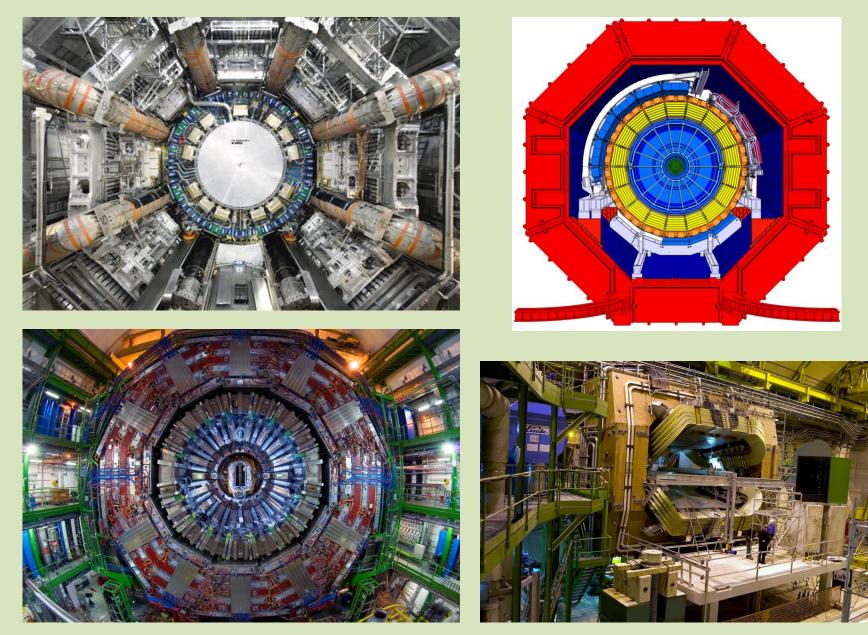
Efforts and progress to perform accelerator R&D as an independent research program with its own, independent funding are described for the example of the Helmholtz ARD program in Germany.

Links to efforts in other countries are discussed and an outlook to future accelerator research is given."

How to fund physics using the wisdom of crowds

Grant applications are reviewed by expert scientists and funding policies are shaped by bureaucrats and politicians. This inevitably leads to mountains of paperwork, and Jackson argues that this wastes valuable time that could be spent on actually doing research.

His solution is for physicists to appeal directly to the public for research money by using <u>Fiat</u> <u>Physica, which he launched late last year.</u> *Physics world.com eventswire* May 25 2015 EU Framework programs /in future Horizon 2020


are also providing funds for joint R&D science - industry – society

Today, accelerator and detector development projects are often organized in large world-wide collaborations and funded by the EU Framework programs. This creates overheads and inefficiencies but also competition and challenges.

LAA and DRDC programs were CERN specific collaborations peer-reviewed by CERN committees and implemented with minimal bureaucracy

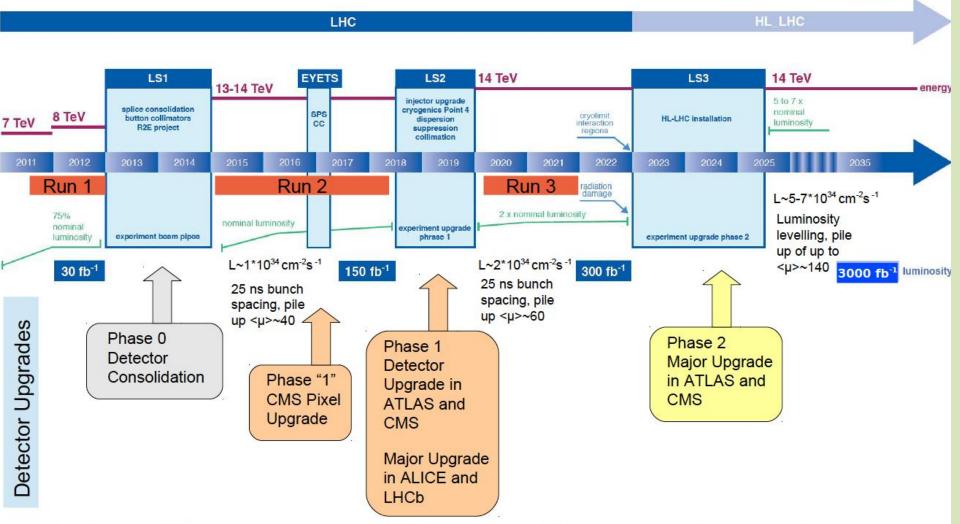
... back to particle physics technologies and R&D

LHC TOOLS installed for 1st RUN

Courtesy CERN FOTOLIBRARY

ERICE ISSP2012

No Higgs without tools


From LHC to HL-LHC

Albert-Ludwigs-Universität Freiburg

2.12.14

LHC/ HL-LHC Plan (last update 24.09.2014) 🚬 🗮

Requires right balance between revolutionary approaches and technology evolution, based on physics potential and cost-effectiveness.

BURG

2013 – 2014: LS1

Primary aim: consolidation for 6.5 to 7 TeV

- Measure all splices and repair the defective ones
- Consolidate interconnects with new design (clamp, shunt)
- Finish installation of pressure release valves (DN200)
- Magnet consolidation exchange of weak cryo-magnets
- Consolidation of the DFBAs
- Measures to further reduce SEE (R2E):
 - relocation, redesign, shielding...
- Install collimators with integrated button BPMs (tertiary collimators and a few secondary collimators)
- Experiments consolidation/upgrades

Challenges of high energy

- Quenches
 - Less margin to critical surface
- Protons have higher energy
 - acceptable loss level is reduced (losses in ramp, UFOs...)
 - set-up beam limit reduced
- Magnets run into saturation
 - field quality (although this is modelled)
- Hardware nearer limits
 - Power converters, beam dump (higher voltages), cryogenics (synchrotron radiation...)

Courtesy: Mike Lamont

50 versus 25 ns

	50 ns	25 ns
GOOD	 Lower total beam current Higher bunch intensity Lower emittance 	• Lower pile-up
BAD	 High pile-up Need to level Pile-up stays high High bunch intensity – instabilities 	 More long range collisions: larger crossing angle; higher beta* Higher emittance Electron cloud: need for scrubbing; emittance blow-up; Higher UFO rate Higher injected bunch train intensity

• Higher total beam current

Courtesy: Mike Lamont

Expect to move to 25 ns because of pile up...

LHC and Detector upgrades

LHC TOOLS installed for 2st RUN which just started

LHC Season 2: Major work at the experiments for Run 2

http://press.web.cern.ch/sites/press.web.cern.ch/files/file/backgrounder/2015/05/ls1 wor kexperiments.pdf

ATLAS

https://cds.cern.ch/journal/CERNBulletin/2014/18/News%20Articles/1696879?In=en

CMS

http://cds.cern.ch/journal/CERNBulletin/2014/18/News%20Articles/1696880

ALICE

https://cds.cern.ch/journal/CERNBulletin/2014/16/News%20Articles/1694094?In=en

LHCb

https://cds.cern.ch/record/1694095?In=en

Detector preparation for Run 2

Albert-Ludwigs-Universität Freiburg

ATLAS

- Insertable B-layer (pixel layer) cooled with CO₂
- New cooling plant for pixel + SCT
- New Al/Be beam pipe
- Replaced all LV power supplies of calorimeter
- Increased acceptance in muon spectrometer
- Upgrade of L1 Calo (L1 trigger)
- Add neutron shielding

LHCb

- New Forward shower detector
- RICH detector
- Trigger system to allow offline analysis at 12.5kHz

HCb

CMS

- Upgrade HCAL photo detectors
- Increased acceptance in muon system
- Thinner and centered beam pipe
- Repair of shorts in pixel detector barrel
- Installed pilot system for future upgrades
- Consolidation work to complete original detector
- Start upgrade for high pile-up
- ...

ALICE

- DCAL installation
- Additional TRD modules
- Augmented trigger hardware and software

Susanne Kühn - LHC and Detector Upgrades

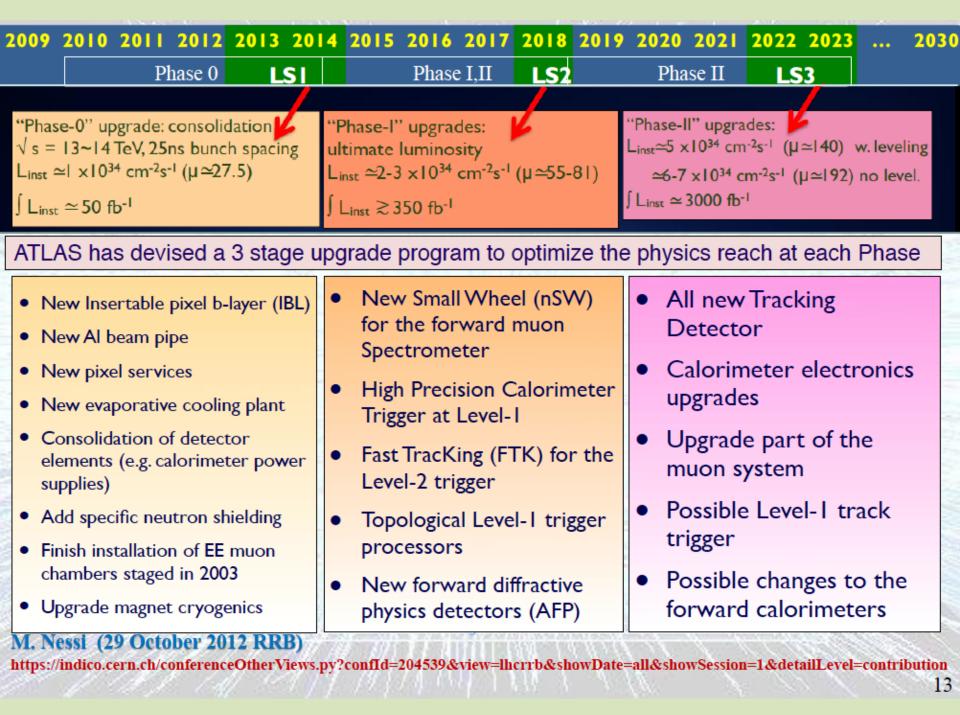
2.12.14

EPS - Technology and Innovation workshop

from Monday, 22 October 2012 at 08:00 to Wednesday, 24 October 2012 at 19:30 (Europe/Zurich) **PERICE**Teally

Short intermezzo

ATLAB, as an organized effort to support detector R&D in ATLAS


Erice October 22nd, 2012

Marzio Nessi CERN & University of Geneva Markus Nordberg CERN

6/25/2015

ISSP 2015 - H.Wenninger

Horizon 2020

2014-2020

The EU Framework Programme for Research and Innovation

Neville Reeve

DG RTD A3

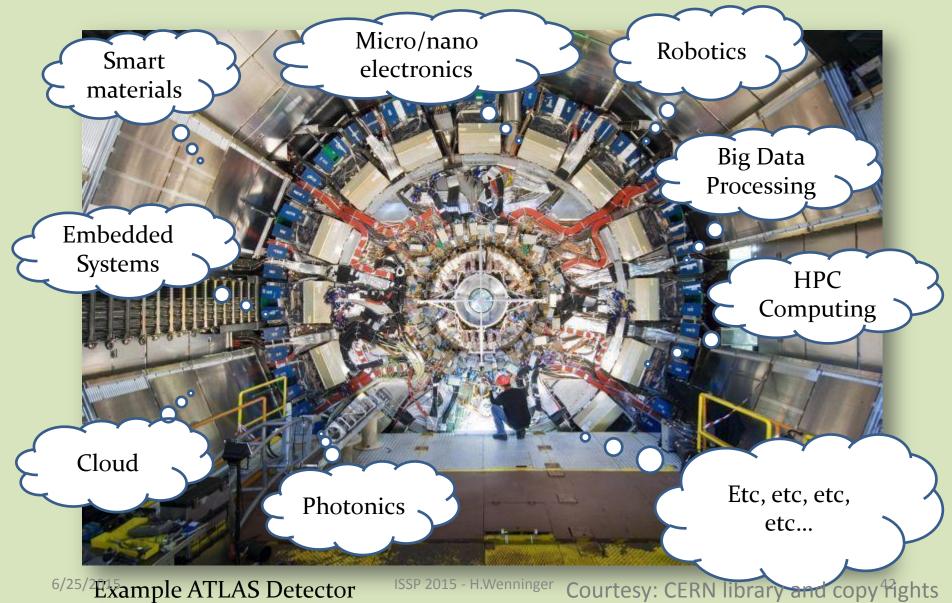
HORIZON 2020

What's new

- A single programme bringing together three separate programmes/initiatives*
- Coupling research to innovation from research to retail, all forms of innovation
- Focus on societal challenges facing EU society, e.g. health, clean energy and transport
- **Simplified access**, for all companies, universities, institutes in all EU countries and beyond.

*The 7th Research Framework Programme (FP7), innovation aspects of Competitiveness and Innovation Framework Programme (CIP), EU contribution to the European Institute of Innovation and Technology (EIT)

ATTRACT – From Open Science to Open Innovation


Information Sharing Meeting Brussels, June 19, 2014 Markus Nordberg (CERN) Development and Innovation Unit (DG-DI-DI)

6/25/2015

Industrial and Societal value of Detection and Imaging Technology

Pablo Tello, CERN, Knowledge Transfer ATTRACT meeting, Brussels June 19th 2014

When we talk about Detection and Imaging Technologies... what do we talk about?

ATTRACT Is About an Ecosystem

New Scientific Instruments, Products, Services, Entrepreneurs, Jobs

Innovation Management Platform

Cross-disciplinary MSc-Student Teams

Industry (special attention to on SMEs)

Sensor & Imaging R&D Community With Ambitious Goals and Projects **Contributing to**

Connecting through

Engaging

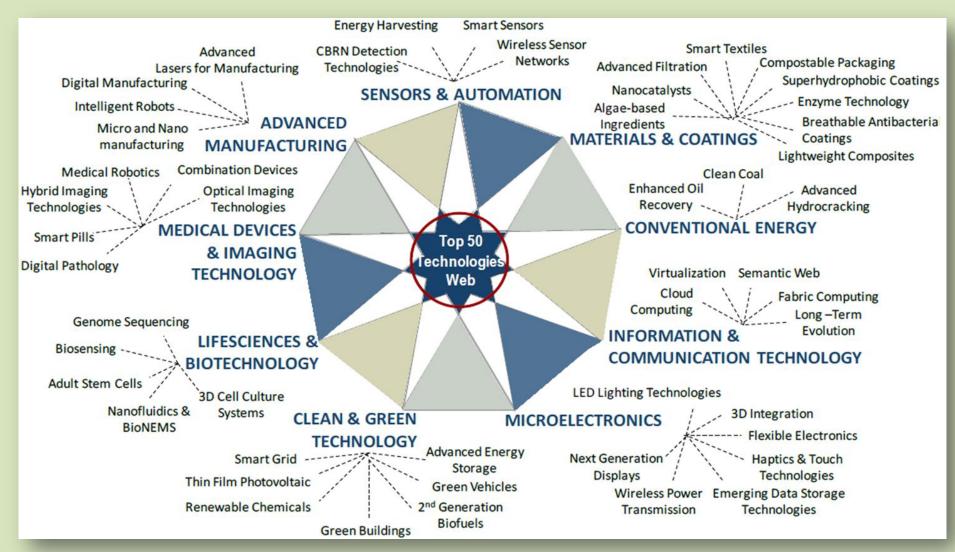
Co-developing with

Being driven by

Detection and Imaging Technologies

Radiation hard ASICS and FPGA technology developed at ESA, DESY, etc, can be one of the keys.

MEDIPIX Chip technology

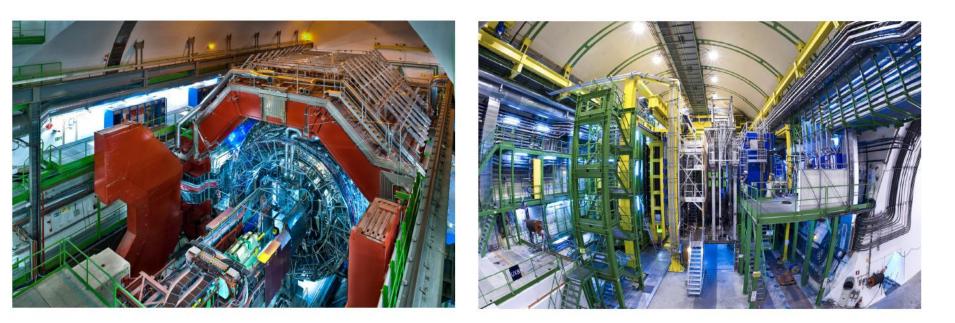

has been applied in X-ray CT, in prototype systems for digital mammography, in CT imagers for mammography and for beta and gamma autoradiography of biological samples.

> Optoelectronics sensing technology developed for fundamental research allows for innovative real time in flight aircraft health structure monitoring.

Hardware (i.e. microcooled ASICS) and software

(i.e. cloud computing)
technologies developed
 for large RI
instruments can be put
 to work for reducing
 global CO₂ footprint.

Difficult to think on a technology not in connection with Detection and Imaging


6/25/2015

Source: Frost & Sullivan, Megatrends in Technology Convergence

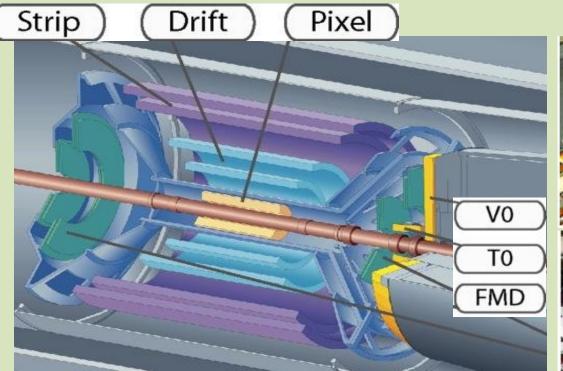
... back to particle physics technologies and R&D

LHC TOOLS installed for 2nd RUN

LHC Season 2: Major work at the experiments for Run 2

ALICE: A LARGE ION COLLIDER EXPERIMENT LHCB: LARGE H

LHCB: LARGE HADRON COLLIDER BEAUTY


LONG SHUTDOWN 1 - ALICE

Among the consolidation and improvements to its 19 sub-detectors, they installed a **new calorimeter (DCAL)** extending the range covered by the electromagnetic calorimeter (EMCAL).

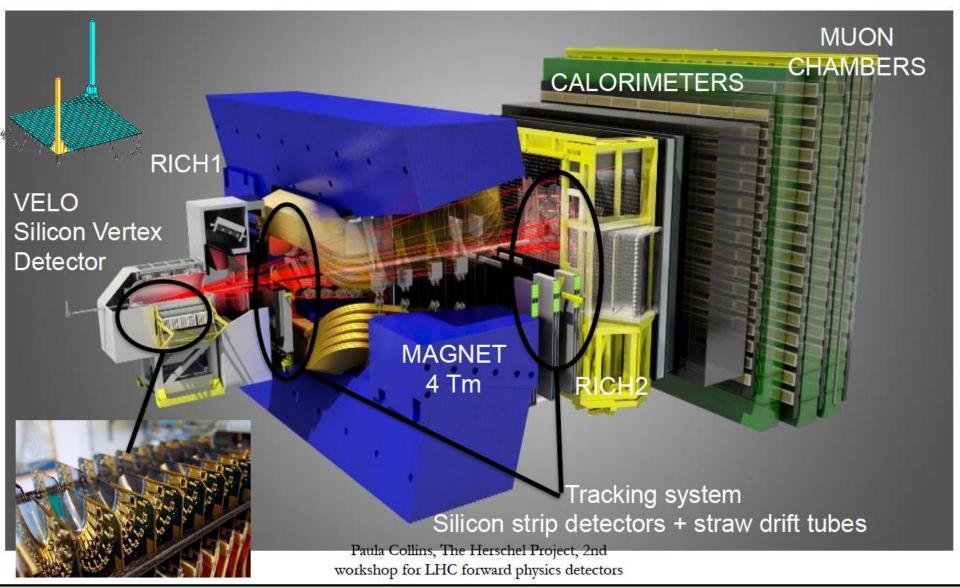
The EMCAL now covers a wider angle, allowing measurements of the energy of the photons and electrons over a larger area.

The TRD (Transition Radiation Detector) that detects particle tracks and identifies electrons has also been completed with the addition of 5 more modules

The Current ALICE Inner Tracking System

Current ITS 6 concentric barrels,

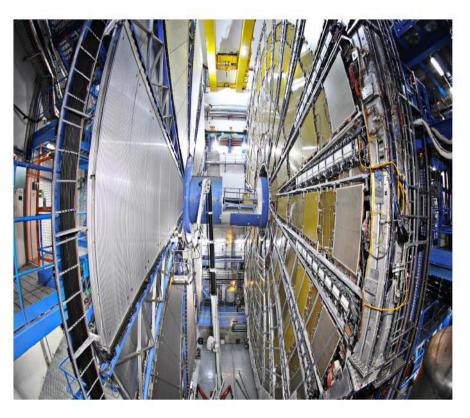
- 2 layers of silicon pixel (SPD)
- 2 layers of silicon drift (SDD)
- 2 layers of silicon strips (SSD)

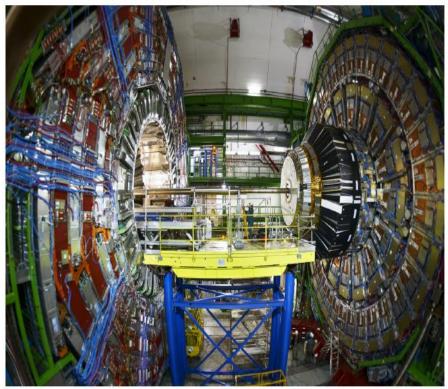

LONG SHUTDOWN 1 – LHCb

Installation of the new **HeRSCheL** detector to distinguish rare processes in which particles are observed in the detector but not along the beampipe.

A section of the beryllium beam pipe replaced.

LHCb Detector


Single arm forward spectrometer dedicated to precision flavour physics

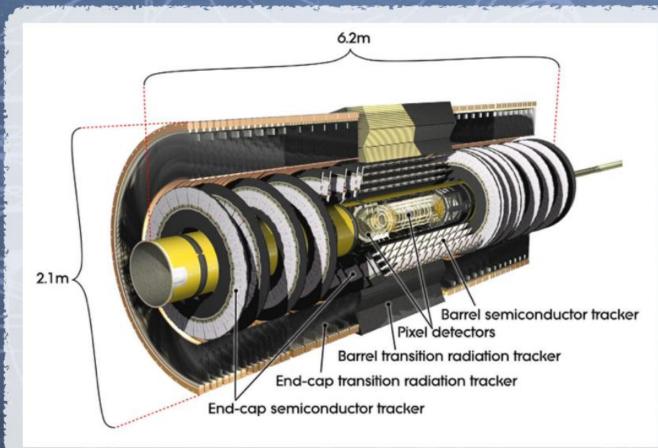


ATLAS: A TOROIDAL LHC APPARATUS / CMS: COMPACT MUON SOLENOID

WHAT IS ATLAS? WHAT IS CMS?

The ATLAS and CMS detectors have a broad physics programme including investigating the recently discovered Higgs Boson, searching for extra dimensions and particles that could make up dark matter, as well as continuing systematic studies of the Standard Model.

LONG SHUTDOWN 1 – ATLAS


The ATLAS pixel detector was improved with the insertion of a fourth and innermost layer that will provide the experiment with better vertex identification, essential to distinguish interesting collisions.

Improvement of general ATLAS **infrastructure**, including electrical power, cryogenic and cooling systems.

The gas system of the TRT, which contributes to the identification of electrons as well as track reconstruction, was modified significantly to minimise losses.

ATLAS Inner Detector^{overview}

 4th Pixel layer with planar & 3D silicon sensors (3.27 cm radius) - 12M pixels of 50 × 250 μm² Radiation tolerance: 2.5 MGy / 5 x 10¹⁵ n_{eq} cm⁻² (5/25/2015 - H.Wenninger

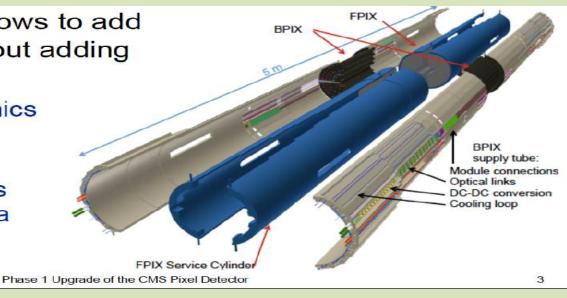
- located in 2T solenoid magnetic field
- 3 main detectors:
 - 350k channel Transition Radiation Tracker (TRT)
 - 6M Channel Silicon microstrips (SCT)
 - 80M channel Silicon Pixel Detector 54

LONG SHUTDOWN 1 – ATLAS

New chambers were added in the **muon spectrometer** and the calorimeter readout consolidated.

- The **forward detectors** were upgraded to provide a better measurement of the LHC luminosity
- A new aluminium beam pipe to reduce the background.

The whole **detector readout system** was improved to be able to run at 100 KHz and all data acquisition software and monitoring applications were re-engineered. **The trigger system** was redesigned, going from 3 levels to 2 while implementing smarter and faster selection algorithms.


A very ambitious upgrade of simulation, reconstruction and analysis software was completed, and a new generation of data management tools on the GRID was implemented.

LONG SHUTDOWN 1 – CMS

Priority was to mitigate the effects of radiation on the performance of the Tracker, by equipping it to operate at low temperatures (down to -20°C).

This required **changes to the cooling plant**, and extensive work on the environment control of detector and cooling distribution to prevent condensation or icing.

- Optimized design allows to add additional layer without adding material:
 - lightweight mechanics and CO₂ cooling
 - Connectors and auxiliary electronics moved to higher eta

Lea Caminada

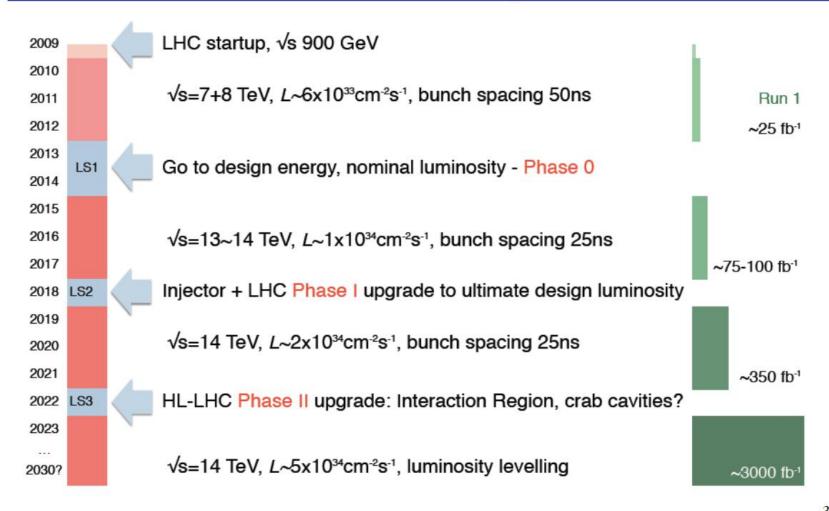
LONG SHUTDOWN 1 – CMS

A fourth measuring station was added to each **muon endcap**, in order to maintain discrimination between low-momentum muons and background as the LHC beam intensities increase. Complementary to this installation at each end of the detector of a 125-tonne composite shielding wall to reduce neutron backgrounds.

A luminosity-measuring device, the Pixel Luminosity Telescope, was installed on either side of the collision point around the beam-pipe.

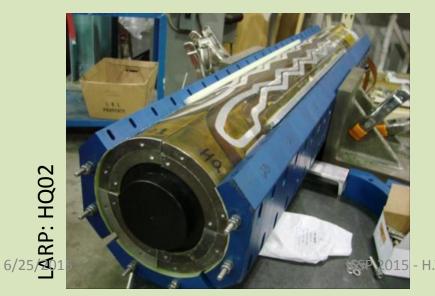
Other major activities included replacing photo-detectors in the hadron calorimeter with better-performing designs, moving the **muon readout** to more accessible locations for maintenance, installation of the first stage of **a new hardware triggering system** and consolidation of the solenoid's magnet cryogenic system and of the power distribution.

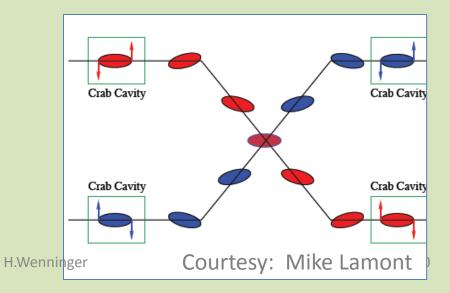
The software and computing systems underwent a significant overhaul during the shutdown to reduce the time needed to produce analysis datasets.


Ö

The LHC experiments are back in business with record energy collisions of #13TeV: cern.ch/go/D7z6

You, CERN, CERN en français and 5 others




LHC Roadmap

HL-LHC: main thrusts

- Wide aperture Nb₃Sn triplet quadrupoles
 - Optics and layout: beta* = 15 cm
- 11 T Nb₃Sn dipoles
 - Used to make room for collimation in dispersion suppression region
- Large Aperture NbTi separator magnets
 - First twin aperture magnets near interaction
- Crab cavities
 - Reduce the effect of the crossing angle
- Enhanced collimation for 500 MJ beams

ECFA HL-LHC: Concluding Remarks & Future Workshops

D. Contardo, P. Allport Aix-les-Bains: 3rd October

Existing areas of common detector R&D, potential future areas and synergies⁴

It is anticipated that 3-4 years of R&D and prototyping, followed by 5-6 years of construction, are needed to complete the largest upgrades.

Funding Agencies will need to invest now in targeted R&D to develop costeffective technical solutions, which CERN can help facilitate, and this needs to proceed rapidly and with adequate resources.

• There are existing forums for interaction between the machine and the experiments but it is always helpful to provide updates on this to a larger forum to be sure key parameters are understood across experiments.

From LHC design to ultimate luminosity:

- problems: pile-up, particle density, radiation damage
- performance loss : pixel tracker, trigger, end-caps, electronics

General Survival & Improvement Concepts

- pile-up 20 \rightarrow 140...200
 - association of tracks and calorimeter energies to individual vertices (up to high eta)
 - particle flow reconstruction
- particle densities x5-10 (ATLAS+CMS: 6'000 primary tracks per event) ٠
 - − finer granularity → more channels
- data rates (particles per event) x5-10
 - higher band-width (analogue → digital links)
- increased trigger rates (at fixed thresholds) due to degraded resolution and ambiguities ٠
 - improve resolution of pt and E measurement at trigger level
 - use topological information
 - provide tracking information to L1 trigger
 - increase latency and acceptable trigger rates (LHCb: no trigger at all: 40 MHz read-out)
- radiation damage x10 ٠
 - more radiation hard detection elements (silicon, crystals)
- increased front-end power consumption ٠
 - ASIC technology scaling 250nm \rightarrow 130 nm \rightarrow 65 nm to reduce power per transistor
 - improved powering and cooling
- reduce material budget inside detector volume

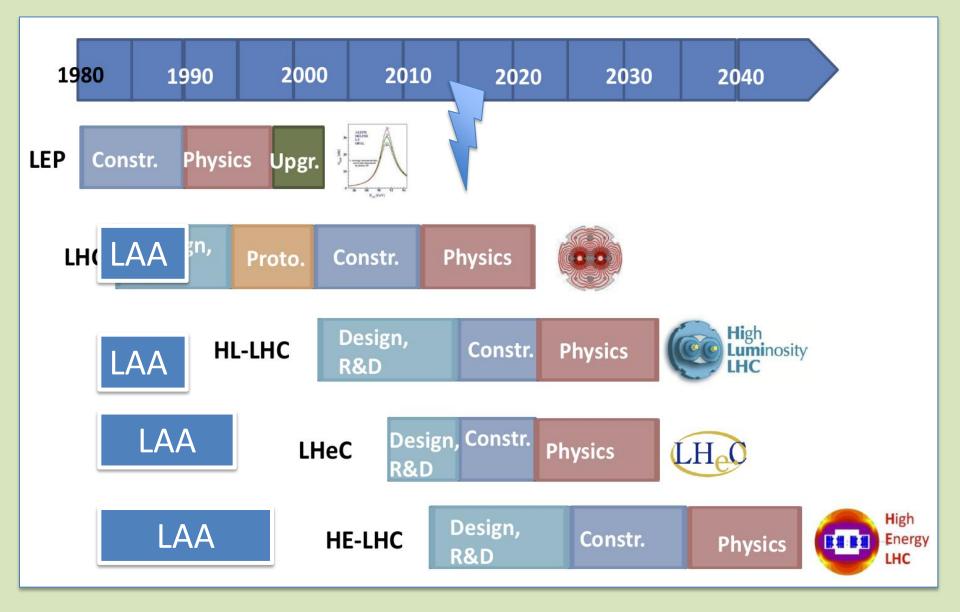
new technologies needed + keep what works well + cost-effective solutions + keep logistics in mind (ALARA)

- changes to a running system ٠
 - test new systems as early as possible (e.g. run new triggers in parallel to old ones, COURTESY: LUTZ Feld 4

General Remarks

Systems

• Tracking Systems


• Calorimetry

• Muon Systems

- Electronics &
- Readout Systems
- Trigger/DAQ/Offline/ Computing

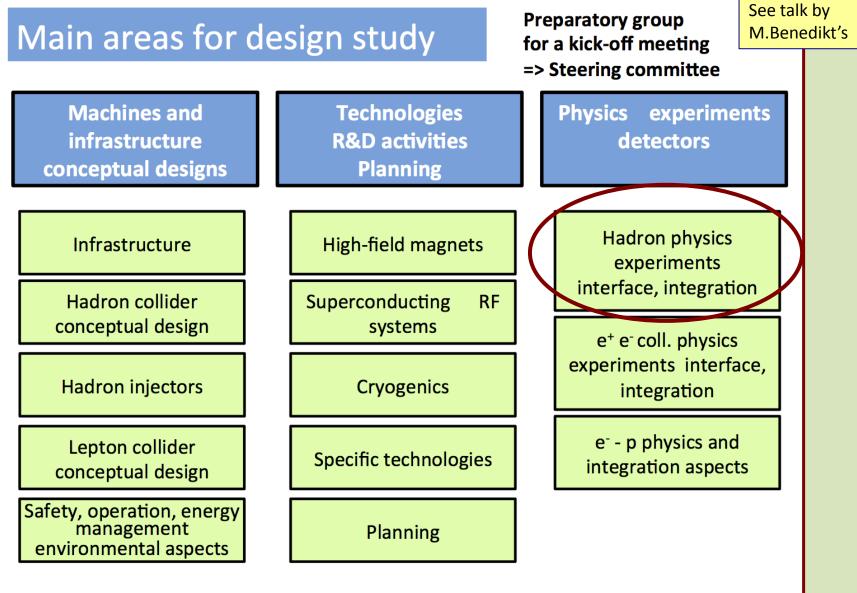
R&D collaborations and Groups

- RD 50 collaboration (rad. hard semiconductors)
- Cooling: PH-DT and ext. collaborators
- RD52 collaboration (Dual-Readout Calorimetry)
- CALICE collaboration (Calo. for linear coll.)
- RD 51 collaboration
 Micro-Pattern Gas Detectors Technologies
- Common Electronics Projects, ACES
- RD 53 collaboration (Dev. of Pixel Readout IC)
- TDAQ teams of the experiments
- PH-SFT group and ext. collaborators

Not all is negative with

Horizon 2020 is the biggest EU Research and Innovation programme ever with nearly € 80 billion of funding available over 7 years (2014 to 2020)

In addition to the private investment that this money will attract. It promises more breakthroughs, discoveries and world-firsts by taking great ideas from the lab to the market.


Science Industry Society 24 441 M € 17 016 M € 29 679 M €

FCC-hh Workshop: 26-28 May Introduction

Fabiola Gianotti (CERN PH)

Courtesy: Jörg Wenninger and Johannes Gutleber

PP-131007-MBE_FCC Design Study

The EuroCirCol kick-off event at CERN

on 2-4 June brought together 62 participants to constitute governance bodies, commit to the project plan and align the organisation, structures and processes of 16 institutions from 10 countries.

The goal of the project is to conceive a post-LHC research infrastructure around a 100 km circular energy-frontier hadron collider capable of reaching 100 TeV collisions. The project officially started on 1 June and will run for four years. The total estimated budget of 11.2 million Euros includes **a 2.99 million Euro contribution from the Horizon 2020 programme** on developing new world-class research infrastructures.

EuroCirCol is a building block in the globally coordinated strategy of the FCC study to produce a global design for a global machine.

What is AIDA-2020?

The AIDA-2020 project brings together the leading European research infrastructures in the field of detector development and testing and a number of institutes, universities and technological centers, thus assembling the necessary expertise for the ambitious programme of work.

Who is involved?

In total, 19 countries and CERN are involved in a coherent and coordinated programme of NAs, TAs and JRAs, fully in line with the priorities of the <u>European Strategy for Particle Physics</u>.

What benefits does AIDA-2020 offer?

AIDA-2020 aims to advance detector technologies beyond current limits **by offering well-equipped test beam and irradiation facilities** for testing detector systems under its Transnational Access programme.

6/25/2015

Common software tools, micro-electronics and data acquisition systems are also provided. This shared high-quality infrastructure will ensure optimal use and coherent development, thus increasing knowledge exchange between European groups and maximising scientific progress. The project also exploits the innovation potential of detector research by engaging with European industry for largescale production of detector systems and by developing applications outside of particle physics, e.g. for medical imaging.

AIDA-2020 will lead to enhanced coordination within the European detector community, leveraging EU and national resources. The project will explore novel detector technologies and will provide the ERA with world-class infrastructure for detector development, benefiting thousands of researchers participating in future particle physics projects, and contributing to maintaining Europe's leadership of the field.

AIDA-2020

AIDA-2020

General meetings	1 event	•
Governing Board	empty	
WP1 (MGT) Project management and coordination	4 events	
WP2 (NA1) Innovation and outreach	empty	
WP3 (NA2) Advanced software	1 event	
WP4 (NA3) Micro-electronics and interconnections	1 event	
WP5 (NA4) Data acquisition system for beam tests	1 event	
WP6 (NA5) Novel high voltage and resistive CMOS sensors	empty	
WP7 (NA6) Advanced hybrid pixel detectors	1 event	
WP8 (NA7) Large scale cryogenic liquid detectors	1 event	

AIDA-PUB-2015-006 -

Advanced European Infrastructures for Detectors at Accelerators

Journal Publication

Development of front-end electronics for LumiCal detector in CMOS 130 nm technology

Firlej, M (AGH-UST) et al

The EU Framework Programme for Research and Innovation

HORIZON 2020

AGA – Annotated Model Grant Agreement

Version 2.0.1 12 May 2015

Document with 634 pages

6/25/2015

Cost – Benefit - Analysis mandatory for any EU grant > 50 M€

CBA is widely endorsed by governments (recent review by the OECD): transport, environment, energy, water, industry, health, education, cultural heritage, more recently climate change remedial actions, but very little progress on scientific projects

strongly advocated by international organizations: mandatory for any EU grant beyond 50 million Euro (ERDF), five edition of EC CBA GUIDE (last one 2014), regularly performed by World Bank, EIB, ADB, etc.

the core of the theory and applications is how to identify and forecast project inputs, outputs and their 'shadow prices'

our research (3 years) is sponsored by the EIB after a competition for a grant: they asked to universities to develop and test a CBA model for research, development and innovation projects. We proposed to develop a new method and to test it on LHC and CNAO (Hadrontherapy).

Courtesy: CERN colloquium and copy rights

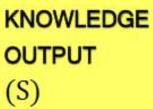
COST-BENEFIT ANALYSIS OF THE LHC TO 2025 AND BEYOND: Was it Worth it ?

Massimo Florio Università degli Studi di Milano

with

Stefano Forte

Università degli Studi di Milano


Emanuela Sirtori CSIL Centre for Industrial Studies

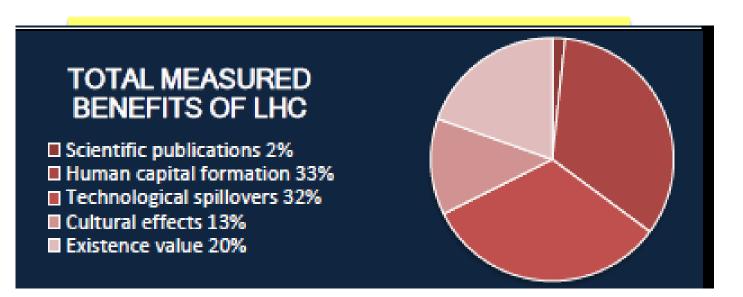
Courtesy: CERN colloquium and copy rights

ISSP 2015 - H.Wenninger

The present value of use-benefits $PV_{B_{\mu}}$ is the sum of the economic value of:

HUMAN CAPITAL FORMATION (H)

TECHNOLOGICAL EXTERNALITIES (T)


CULTURAL EFFECTS (C)

Courtesy Prof. Massimo Florio

Cost Benefit Analysis of Research Infrastructure LHC

The CBA model for pure and applied research infrastructures turns into the following equation:

$$NPV_{RI} = \begin{bmatrix} PUBLICATIONS \\ (S) \\ NPV_{RI} = \begin{bmatrix} \sum_{i=1}^{n} \sum_{t=1}^{T} \frac{s_t \cdot P_{it}}{k_{it}} + \sum_{i=0}^{n} \sum_{t=1}^{T} s_t \cdot Q_{it} \end{bmatrix} + \begin{bmatrix} TECHNOLOGY \\ (T) \\ MPV_{RI} \end{bmatrix} + \begin{bmatrix} EDUCATION \\ (H) \\ MPV_{RI} \end{bmatrix} + \begin{bmatrix} OUTREACH \\ (C) \\ MPV_{RI} \end{bmatrix} \begin{bmatrix} PUBLIC \\ GOOD \\ (B_n) \\ MPV_{RI} \end{bmatrix} + \begin{bmatrix} \sum_{i=1}^{n} \sum_{t=1}^{T} \frac{s_t \cdot P_{it}}{k_{it}} + \sum_{i=0}^{n} \sum_{t=1}^{T} s_t \cdot Q_{it} \end{bmatrix} + \begin{bmatrix} \sum_{j=1}^{T} \sum_{t=0}^{T} \frac{R_{jt}}{(1+r)^t} \\ MPV_{RI} \end{bmatrix} + \begin{bmatrix} \sum_{i=1}^{n} \sum_{t=1}^{T} \frac{W_{gt}}{(1+r)^t} \\ MPV_{RI} \end{bmatrix} + \begin{bmatrix} COSTS \\ GOOD \\ (B_n) \\ MPV_{RI} \end{bmatrix} \end{bmatrix}$$

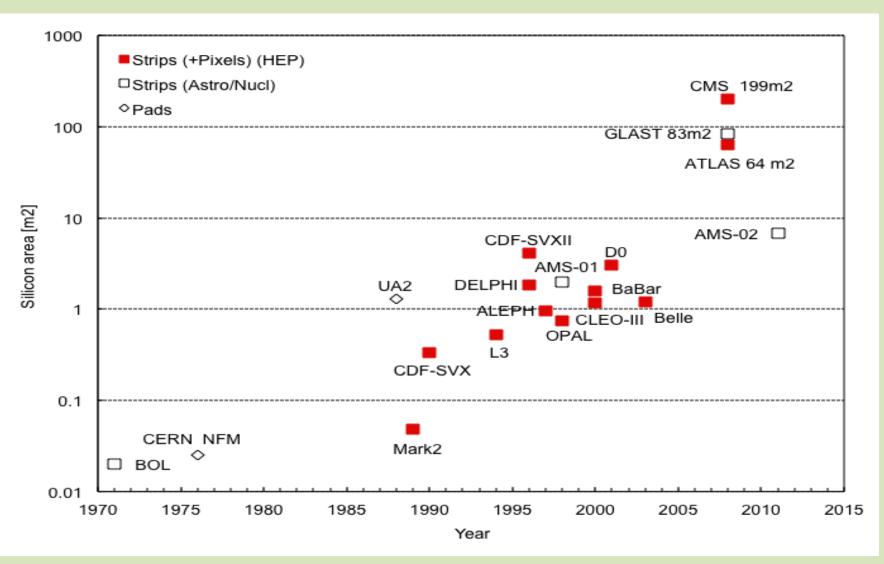
Courtesy Prof. Massimo Florio

Setting to zero any until now unpredictable economic value of discovery of the Higgs boson (or of any new physics), we compute a probability distribution for the net present value of the LHC through Monte Carlo simulation of 19 input, output and valuation variables and show that there is currently 92% probability that social benefits of the LHC exceed its costs

Courtesy Prof. Massimo Florio

Microelectronics at CERN: from infancy to maturity

Two decades of microelectronics at CERN enabled by the LAA project.


In 1988, the AMPLEX multiplexed read-out chip used in UA2

Hybrid pixel devices, with a read-out chip "bump bonded" to the detector, were used in WA97 in the mid-1990s.

By 2002, CERN had developed a bump-bonded 8000-channel pixel for the ALICE silicon-pixel detector at the LHC.

The silicon age: micrometer precision at 40 million shots per second At CERN a first MPW was designed in 1986, in collaboration with the IMEC laboratory in Leuven. This led to the production of the AMPLEX chip for silicon pad detectors, and the founding of a dedicated microelectronics design activity at CERN. Then finally the idea of a matrix of parallel, microscopic sensor elements could be implemented, now commonly called pixel detector.

CERN collaborated with circuit design specialists from EPFL in Lausanne on a CMOS chip with a 12x9 matrix of cells that each contained a contact, amplifier and following functions. **This project was supported by Italian-funded LAA project**.

Evolution over time of the surface area of silicon detector systems in particle physics and in recent, space-based experiments. **Source Yoshinobu Unno, KEK.**

Thanks for listening to learn about the LAA