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New physics is needed to understand black holes,

or more generally,

to understand the small-distance structure of quantized
general relativity when we approach the Planckian regime.

This new physics is

- exact, spontaneously broken, local, conformal invariance (++)

- advanced approaches to indefinite metric fields (−)

- deterministic theory of quantum mechanics (+)
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Intro

Physics as a science could not exist without symmetries

e.g. Galilëı invariance.

Lorentz discovered how to reconcile that with electromagnetism:
→ Lorentz invariance

Einstein:

this symmetry holds for all of physics.

Now we know how to describe particles at all velocities

Poincaré invariance:

If you know Nature’s laws at one space-time point, you know them
everywhere.

Then why is physics still so difficult?
answer:
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Poincaré invariance:

If you know Nature’s laws at one space-time point, you know them
everywhere.

Then why is physics still so difficult?
answer:

3 / 29



Intro

Physics as a science could not exist without symmetries
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If we know how two particles collide, we still do not know how they
collide at higher relative energies.

This is because a symmetry is missing:

How do we perform scale transformations?

Suppose scale transformations were an exact symmetry . . .

if we knew how the vacuum transforms under a scale
transformation;

scale transformation symmetry is spontaneously broken

However, we also have gravity. Therefore
we need local spontaneously broken scale invariance.

That is:
local, spontaneously broken, conformal invariance:

gµν → Ω(~x , t) gµν .
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See an essay submitted to the Gravity Research Foundation
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Extended Intro

The electroweak theory (summary)

- The Fermi interaction (= the large distance limit)

→ Dirac monopoles are singular

- Auxiliary fields

- Divergences and counter terms

- Adding the kinetic terms

- The local symmetry algebra

- Result: A renormalizable theory

→ Magetic monopoles are now regular solitons
(in extended, grand unified theories)
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Gravity (summary)

- The Einstein Hilbert action (= the large distance limit)

→ Black holes are singular

- Auxiliary fields

- Divergences and counter terms

- Adding a kinetic term

- The local symmetry algebra

- Result: A renormalizable theory

→ Black holes are now regular solitons
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The electroweak theory

The fundamental Fermi interaction:

µ

i
µ

ie

e

LF = 1
2 g 2

F JµJµ ; Jµ = ψγµψ .

Auxiliary field: Aµ:

L = −1
2 A2

µ + gF AµJµ . Solve: Aµ = gF Jµ → L = LF

Second auxilary field: φ:

q

V(q)

F

V (φ) = 1
2λφ(φ2 − F 2)2

1
2 A2

µ → 1
2 A2

µφ
2

Fermion mass terms: −λY ψ φψ
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Divergences and counter terms

The only dynamical fields are the ψ fields. Divergent diagrams:

A A q q q q

A

∼ k2 A2
µ ∼ k2 φ2 ∼ k φ2 Aµ

Therefore, extra terms are needed in L:

−1
4 FµνFµν − 1

2 (∂µφ)2 − Aµ φ∂µφ

or: −1
2 (Dµφ)2 , Dµ = ∂µ + gF Aµ

All terms that can arise as divergences must be added to L.
The new terms all vanish as k → 0

One has to be aware of all possible local symmetries.
This leads to the Yang-Mills theory.
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Exactly the same program can be applied to

the gravitational force!

But it is not trivial. One has to choose the right auxiliary fields.
And the right algebra must still be guessed.

The following attempt appears to be successful.
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L = LEH + Lmatter + Lkin

LEH = 1
16πG

√
−g (R − 2Λ)

Lmatter = LYM(A) + Lbos(A, φ, gµν) + Lferm(A, ψ, φ, gµν)

In the theory without Lkin , black holes are exceptional solutions,
unavoidable, but with a horizon and a singularity inside.

There is an information problem with the black hole microstates.
Something is not right.

Now, introduce auxiliary fields. Write:

gµν = ω2(~x , t) ĝµν . L = L(ω, ĝµν , Aµ, ψ, φ)

“Trivial” local symmetry:
ĝµν → Ω(~x , t)gµν , ω → Ω−1ω , φ→ Ω−1φ , ψ → Ω−3/2ψ .

this is a local, conformal ivariance.
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LEH =
√
−ĝ
(

1
16πG (ω2 R̂ + 6ĝµν∂µω∂νω) − Λ

8πG ω4
)

Lmatter = − 1
4 FµνFµν +

√
ĝ
(
−1

2 ĝµνDµφDνφ− 1
2 m2ω2φ2 − 1

12 R̂φ2 − λ
8φ

4
)
− Lferm

This seems to be a perfectly renormalizable Lagrangian!

Except, there is no kinetic term for the field ĝµν . . .

(The Einstein-Hilbert term entirely morphed

into the kinetic terms for our new ω field)

Indeed, there are still divergences in the pure gravity diagrams, for
which no counter terms are to be found in the above Lagrangian:
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All these diagrams diverge quartically: ∼ k4 (δĝµν)n

Only one term exists that obeys local conformal invariance:
the Weyl term:

Lkin = −λW

2 Cµναβ Cµναβ → −λW

4 (∂2ĝ transverse
µν )2

(contracted using ĝµν , while ω drops out)

According to the rule, which was perfectly valid for the SM, every
counter term that is needed in the Lagrangian, must also be put in
the “bare” Lagrangian. That certainly also holds for kinetic terms.
If we accept LW as a kinetic term for gravity, the theory becomes
renormalizable.

The 1/λW expansion is the usual perturbation expansion

However,
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However,

this kinetic term is not of the usual form. It has (k)4 terms,
including terms of order (k0)4.

Consequence:

negative metric states

This we postpone for a moment
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Good News:

Black holes

With the kinetic terms in place, solutions that used to have
singularities, now may become regular.
This can also be due to the enhanced local symmetry
(here: conformal symmetry)

A decaying black hole has an information problem: where do the
microstates go when it decays?

An observer falling in experiences a horizon when the black hole
still has its original mass M.
An outside observer sees the mass M shrink to 0 while the ingoing
observer is still lingering on the horizon.

Who is right?
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Answer: they are both right and both wrong:
the mass is not conformally invariant, or,
they may be using different vacuum expectation values for the
ω field, because they define the vacuum state differently.

The ĝµν metric is

ds2 = M2(t̃)
(
−dt2(1− 2

r ) + dr2

1−2/r + r 2(dθ2 + sin2 θdϕ2)
)

M2(t̃) is different for different observers: they use a different ĝµν .
They are allowed to, if they also use a different ω field.

For the outside observer, there is no horizon. Of course (s)he sees
no singularity.
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conformally symmetric black hole is a locally regular soliton:

b)a) horizon caustic
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Actually, the common region does not exist – shrinks to zero by a
conformal transformation that becomes extreme in the limit of
classical black holes.

Important ne feature:
the ω field can go to zero without prducing physical singularities
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Local conformal symmetry:

vacuum with atom vacuum with
scaled atom

matter (typically
Hawking
radiation)
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More good news: Gravity has become renormalizable

But that is not all . . . !

The local symmetry only works if the anomalies cancel out.
Here, all conformal anomalies must cancel out

All couplings must be scale-invariant: We must be at a fixed point
of the ren. group, or:

All β functions must be zero

There are as many β functions as there are physical constants. So:
as many equs. as there are “unknown” constants.

All constants, including all masses, cosmological constant, and
Weyl constant, must be computable.

The only unknown is the SM algebra.
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Bad news:

Most algebras, such as today’s SM, have no physically acceptable
fixed point(s)

Resolution? Interesting algebras, such as SU(N) and SO(N) at
sufficiently large N may have fixed points in the perturb. regime.

The coupling constant expansion then coincides with a 1/N
expansion.

Technically complex.

Also not solved: the hierarchy problem
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Other bad news:

negative metric

Weyl2 action, together with EH action, with λW ≡ 1/M2, gives:

• 1/(k2 − iε) pole: 2 degrees of freedom, helicity ±2:
the spin 2 massless graviton;

• 1/(k2 + M2 − iε) pole: 5 d.o.f.: helicities ±2, ±1, and 0.
gravitello: a massive spin 2 particle, with negative metric:

1/k2 − 1/(k2 + M2) = 1/(k2 + λW k4)

Note, that conformal gravity differs in an essential way from
ordinary field theories: Energy is not conformally invariant

And the metric ĝµν is not locally observable . . . .
Therefore, stability, and unitarity, have to be approached
differently.
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In perturbation theory: (back to original gµν field )

Lkin = LEH − λW

2 Cµναβ Cµναβ →

− 1
4 (∂g trtr

µν )2 − λW

4 (∂2g trtr
µν )2 (trtr = traceless, transverse)

Field theory of “wrong metric” theories:

(M2 ≡ 1/λ)

L = − 1
2 (∂g)2 − 1

2λ(∂2g)2 + J g .
= − 1

2 (∂g)2 − 1
2φ2

2/λ+ J g + η(φ2 − λ∂2g) .
η = φ2/λ , g ≡ φ1 + φ2 , φ2 → λ∂2g .

L = − 1
2 (∂φ1)2 + 1

2 (∂φ2)2 + 1
2 M2φ2

2 + J (φ1 + φ2) .

The gravitello field φ2 has wrong metric.

Also the field ω would have wrong metric, but that is a ghost particle for
the local conf. symm.

Identify: φ2 = λW Cαβµν , φ1 = (g − φ2)trtr
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Negative metric in the propagator would give contributions of the
form

S
∑

( |light〉〈light| − |heavy〉〈heavy| )S† = I ,
if we use the wrong normalization of states.

This can be done better, in principle. Look at the essentials:

Take two harmonic oscillators:

H = |~k | (p2
1 + x2

1 )−
√
~k 2 + m2 (p2

2 + x2
2 ) ≡ A a†a−B b†b + C

cogwheel

See my Erice lectures last year
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Turning an harmonic oscillator upside-down:

replace b ↔ b†

This has the effect of making both x and p purely imaginary:

x → ix , p → ip

Or: the field of the gravitello (high frequency modes φ2 of ĝµν)
must be chosen purely imaginary

just as the field ω describing the conformal part of gµν

The cogwheel model (with both upper and lower bounds on the
energy spectrum) has x and p lie on the unit circle in the complex
plane.

This is the case where quantum mechanics becomes deterministic.

See my Erice lectures last year
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However, the metric problem has not yet been solved this way.

The φ2 field couples with imaginary coupling constant to the
matter-sources.

This still gives violation of unitarity.

Conjecture: conformally invariant matter might allow us to handle
this situation.
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Connection to the asymptotic safety idea (Weinberg)

At the non-trivial fixed point, this theory is also controlled by
effective operators with dimension 4.
The Landau ghost in this theory is equivalent to our gravitello.
What we added is the possibility to do perturbation expansions.

But beware, we also have to go to the conformal fixed point!
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Conclusions

Gravity should be handled as a candidate – renormalizable theory.

Local conformal symmetry then appears to be an exact, but
spontaneously broken, symmetry.

Atoms, and all other particles obtain their physical sizes only
relative to a field ω .

(m→ m/ω , x → xω, small distance limit now is ω → 0 ).

Normally, ω has expectation value 〈ω 〉 = 1.

Black holes are now ordinary solitons, just as magnetic monopoles.

Price: theory must be at its conformal fixed point: all β functions
vanish.

For that, the SM algebra must be modified, e.g. in a GUT.
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The indefinite metric problem can be addressed, but has not yet
been solved in a satisfactory way.

It is suspected that local conformal symmetry is essential in the
resolution of this problem.

∼ The End ∼
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