$(spin 2) = (spin 1)^2$

Michael Duff

Imperial College

EMFCSC Erice June 2015

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1.0 Basic idea

- Strong nuclear, Weak nuclear and Electromagnetic forces described by Yang-Mills gauge theory (non-abelian generalisation of Maxwell).
 Gluons, W, Z and photons have spin 1.
- Gravitational force described by Einstein's general relativity. Gravitons have spin 2.
- But maybe $GRAVITY = (YANG MILLS)^2$
- If so, gravitational symmetries should follow from those of Yang-Mills

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

1.1 Gravity as square of Yang-Mills

- A recurring theme in attempts to understand the quantum theory of gravity and appears in several different forms:
- Closed states from products of open states and KLT relations in string theory [Kawai:1985, Siegel:1988],
- On-shell D = 10 Type IIA and IIB supergravity representations from on-shell D = 10 super Yang-Mills representations [Green:1987],
- Supergravity scattering amplitudes from those of super Yang-Mills in various dimensions, [Bern:2008, Bern: 2010, 2012,Bianchi:2008,Huang:2012,Cachazo:2013,Dolan:2013]

うして ふゆう ふほう ふほう うらつ

- Ambitwistor strings [Hodges:2011, Mason:2013, Geyer:2014]
- Vector theory of gravity [arXiv:0904.3155 [gr-qc] Anatoly A. Svidzinsky (Texas A-M)]

1.2 Local and global symmetries from Yang-Mills

• LOCAL SYMMETRIES: general covariance, local lorentz invariance, local supersymmtry, local p-form gauge invariance

[arXiv:1408.4434

A. Anastasiou, L. Borsten, M. J. Duff, L. J. Hughes and S. Nagy]

- GLOBAL SYMMETRIES eg $G = E_7$ in D = 4, N = 8 supergravity [arXiv:1301.4176 arXiv:1312.6523 arXiv:1402.4649 A. Anastasiou, L. Borsten, M. J. Duff, L. J. Hughes and S. Nagy]
- YANG-MILLS SPIN-OFF (interesting in its own right): Unified description of (D = 3; N = 1, 2, 4, 8), (D = 4; N = 1, 2, 4), (D = 6; N = 1, 2), (D = 10; N = 1) Yang-Mills in terms of a pair of division algebras (A_n, A_{nN}), n = D − 2 [arXiv:1309.0546

A. Anastasiou, L. Borsten, M. J. Duff, L. J. Hughes and S. Nagy]

• GENERALIZED SELF-MIRROR CONDITION AND VANISHING TRACE ANOMALIES

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1.3 Product?

• Although much of the squaring literature invokes taking a product of left and right Yang-Mills fields

$$A_{\mu}(x)(L)\otimes A_{\nu}(x)(R)$$

it is hard to find a conventional field theory definition of the product. Where do the gauge indices go? Does it obey the Leibnitz rule

$$\partial_{\mu}(f\otimes g) = (\partial_{\mu}f)\otimes g + f\otimes (\partial_{\mu}g)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

If not, why not?

• Here we present a $G_L \times G_R$ product rule :

$$[A_{\mu}{}^{i}(L) \star \Phi_{ii'} \star A_{\nu}{}^{i'}(R)](x)$$

where $\Phi_{ii'}$ is the "spectator" bi-adjoint scalar field introduced by Hodges [Hodges:2011] and Cachazo *et al* [Cachazo:2013] and where * denotes a convolution

$$[f \star g](x) = \int d^4 y f(y) g(x-y).$$

Note $f \star g = g \star f$, $(f \star g) \star h = f \star (g \star h)$, and, importantly obeys

$$\partial_{\mu}(f \star g) = (\partial_{\mu}f) \star g = f \star (\partial_{\mu}g)$$

and not Leibnitz

$$\partial_{\mu}(f\otimes g) = (\partial_{\mu}f)\otimes g + f\otimes (\partial_{\mu}g)$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

For concreteness we focus on

- $\mathcal{N} = 1$ supergravity in D = 4, obtained by tensoring the (4 + 4) off-shell $\mathcal{N}_L = 1$ Yang-Mills multiplet $(A_\mu(L), \chi(L), D(L))$ with the (3 + 0) off-shell $\mathcal{N}_R = 0$ multiplet $A_\mu(R)$.
- Interestingly enough, this yields the new-minimal formulation of $\mathcal{N} = 1$ supergravity [Sohnius:1981] with its 12+12 multiplet $(h_{\mu\nu}, \psi_{\mu}, V_{\mu}, B_{\mu\nu})$
- The dictionary is,

$$egin{aligned} Z_{\mu
u} &\equiv h_{\mu
u} + B_{\mu
u} &= A_{\mu}{}^i(L) &\star & \Phi_{ii'} &\star & A_{
u}{}^{i'}(R) \ \psi_
u &= \chi^i(L) &\star & \Phi_{ii'} &\star & A_{
u}{}^{i'}(R) \ V_
u &= D^i(L) &\star & \Phi_{ii'} &\star & A_{
u}{}^{i'}(R), \end{aligned}$$

うして ふゆう ふほう ふほう うらつ

1.6 Yang-Mills symmetries

• The left supermultiplet is described by a vector superfield Vⁱ(L) transforming as

$$\delta V^{i}(L) = \Lambda^{i}(L) + \bar{\Lambda}^{i}(L) + f^{i}{}_{jk} V^{j}(L) \theta^{k}(L) + \delta_{(a,\lambda,\epsilon)} V^{i}(L).$$

Similarly the right Yang-Mills field $A_{\nu}{}^{i'}(R)$ transforms as

$$\begin{split} \delta A_{\nu}{}^{i'}(R) &= \partial_{\nu} \sigma^{i'}(R) + f^{i'}{}_{j'k'} A_{\nu}{}^{j'}(R) \theta^{k'}(R) \\ &+ \delta_{(a,\lambda)} A_{\nu}{}^{i'}(R). \end{split}$$

and the spectator as

$$\delta \Phi_{ii'} = -f^{j}{}_{ik} \Phi_{ji'} \theta^{k}(L) - f^{j'}{}_{i'k'} \Phi_{ij'} \theta^{k'}(R) + \delta_{a} \Phi_{ii'}.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Plugging these into the dictionary gives the gravity transformation rules.

1.7 Gravitational symmetries

$$\begin{split} \delta Z_{\mu\nu} &= \partial_{\nu} \alpha_{\mu}(L) + \partial_{\mu} \alpha_{\nu}(R), \\ \delta \psi_{\mu} &= \partial_{\mu} \eta, \\ \delta V_{\mu} &= \partial_{\mu} \Lambda, \end{split}$$

where

$$\begin{array}{rcl} \alpha_{\mu}(L) &=& A_{\mu}{}^{i}(L) & \star & \Phi_{ii'} & \star & \sigma^{i'}(R), \\ \alpha_{\nu}(R) &=& \sigma^{i}(L) & \star & \Phi_{ii'} & \star & A_{\nu}{}^{i'}(R), \\ \eta &=& \chi^{i}(L) & \star & \Phi_{ii'} & \star & \sigma^{i'}(R), \\ \Lambda &=& D^{i}(L) & \star & \Phi_{ii'} & \star & \sigma^{i'}(R), \end{array}$$

illustrating how the local gravitational symmetries of general covariance, 2-form gauge invariance, local supersymmetry and local chiral symmetry follow from those of Yang-Mills.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1.8 Supersymmetry

We also recover from the dictionary the component supersymmetry variation of [Sohnius:1981],

$$\begin{split} \delta_{\epsilon} Z_{\mu\nu} &= -4i\bar{\epsilon}\gamma_{\nu}\psi_{\mu}, \\ \delta_{\epsilon}\psi_{\mu} &= -\frac{i}{4}\sigma^{k\lambda}\epsilon\partial_{k}g_{\lambda\mu} + \gamma_{5}\epsilon V_{\mu} \\ &- \gamma_{5}\epsilon H_{\mu} - \frac{i}{2}\sigma_{\mu\nu}\gamma_{5}\epsilon H^{\nu}, \\ \delta_{\epsilon}V_{\mu} &= -\bar{\epsilon}\gamma_{\mu}\sigma^{\kappa\lambda}\gamma_{5}\partial_{\kappa}\psi_{\lambda}. \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1.9 Lorentz multiplet

New minimal supergravity also admits an off-shell Lorentz multiplet $(\Omega_{\mu ab}{}^-, \psi_{ab}, -2V_{ab}{}^+)$ transforming as

$$\delta \mathcal{V}^{ab} = \Lambda^{ab} + \bar{\Lambda}^{ab} + \delta_{(a,\lambda,\epsilon)} \mathcal{V}^{ab}.$$
 (1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

This may also be derived by tensoring the left Yang-Mills superfield $V^i(L)$ with the right Yang-Mills field strength $F^{abi'}(R)$ using the dictionary

$$\begin{split} \mathcal{V}^{ab} &= V^{i}(L) \star \Phi_{ii'} \star F^{abi'}(R), \\ \Lambda^{ab} &= \Lambda^{i}(L) \star \Phi_{ii'} \star F^{abi'}(R). \end{split}$$

1.10 Bianchi identities

• The corresponding Riemann and Torsion tensors are given by

$$R^+_{\mu\nu\rho\sigma} = -F_{\mu\nu}{}^i(L) \star \Phi_{ii'} \star F_{\rho\sigma}{}^{i'}(R) = R^-_{\rho\sigma\mu\nu}.$$

$$T^{+}_{\mu\nu\rho} = -F_{[\mu\nu}{}^{i}(L)\star\Phi_{ii'}\star A_{\rho]}{}^{i'}(R) = -A_{[\rho}{}^{i}(L)\star\Phi_{ii'}\star F_{\mu\nu]}{}^{i'}(R) = -T^{-}_{\mu\nu\rho}$$

• One can show that (to linearised order) the gravitational Bianchi identities follow from those of Yang-Mills

$$D_{[\mu}(L)F_{\nu\rho]}'(L) = 0 = D_{[\mu}(R)F_{\nu\rho]}'(R)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1.11 To do

- Convoluting the off-shell Yang-Mills multiplets $(4 + 4, N_L = 1)$ and $(3 + 0, N_R = 0)$ yields the 12 + 12 new-minimal off-shell $\mathcal{N} = 1$ supergravity.
- We expect that convoluting the off-shell general multiplet $(8+8, \mathcal{N}_L = 1)$ and $(3+0, \mathcal{N}_R = 0)$ yields the 24 + 24 non-minimal off-shell $\mathcal{N} = 1$ supergravity [Breitenlohner:1977].
- We expect convoluting $(4 + 4, N_L = 1)$ and $(4 + 4, N_R = 1)$ yields the 32 + 32 minimal off-shell $\mathcal{N} = 2$ supergravity [Fradkin:1979, deWit:1979, Breitenlohner:1979, Breitenlohner:1980]. The latter would involve bosons from the product of left and right fermions.
- Clearly two important improvements would be to generalise our results to the full non-linear transformation rules and to address the issue of dynamics as well as symmetries.

2.1 Division algebras

- Mathematicians deal with four kinds of numbers, called Divison Algebras.
- The Octonions occupy a privileged position :

Name	Symbol	Imaginary parts
Reals	\mathbb{R}	0
Complexes	\mathbb{C}	1
Quaternions	\mathbb{H}	3
Octonions	\mathbb{O}	7

Table : Division Algebras

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

2.2 Lie algebras

 They provide an intuitive basis for the exceptional Lie algebras: Classical algebras
 Rank
 Dimension

An	SU(n+1)	п	$(n+1)^2 - 1$
B _n	SO(2n+1)	п	n(2n+1)
Cn	<i>Sp</i> (2 <i>n</i>)	п	n(2n+1)
D _n	SO(2n)	п	n(2n - 1)

Exceptional algebras

E ₆	6	78
E ₇	7	133
E ₈	8	248
F ₄	4	52
G ₂	2	14

Table : Classical and exceptional Lie alebras

• Freudenthal-Rozenfeld-Tits magic square

A_L/A_R	\mathbb{R}	\mathbb{C}	\mathbb{H}	\mathbb{O}
\mathbb{R}	A_1	A_2	<i>C</i> ₃	F_4
\mathbb{C}	A_2	$A_{2} + A_{2}$	A_5	E_6
\mathbb{H}	<i>C</i> ₃	A_5	D_6	E_7
0	<i>F</i> ₄	E_6	E_7	E_8

Table : Magic square

• Despite much effort, however, it is fair to say that the ultimate physical significance of octonions and the magic square remains an enigma.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

2.4 Octonions

- Octonion x given by $x = x^0e_0 + x10e_1 + x^2e_2 + x^3e_3 + x^4e_4 + x^5e_5 + x^6e_6 + x^7e_7$, One real $e_0 = 1$ and seven $e_i, i = 1, ..., 7$ imaginary elements, where $e_0^* = e_0$ and $e_i^* = -e_i$.
- The imaginary octonionic multiplication rules are,

$$e_i e_j = -\delta_{ij} + C_{ijk} e_k \quad [e_i, e_j, e_k] = 2Q_{ijkl} e_l$$

 C_{mnp} are the octonionic structure constants, the set of oriented lines of the Fano plane.

$$\{ijk\} = \{124, 235, 346, 457, 561, 672, 713\}.$$

• *Q_{ijkl}* are the associators the set of oriented quadrangles in the Fano plane:

$$IJkl = \{3567, 4671, 5712, 6123, 7234, 1345, 2456\},$$

 $Q_{IJkl} = -\frac{1}{31}C_{mnp}\varepsilon_{mnpIJkl}.$

2.5 Fano plane

The Fano plane has seven points and seven lines (the circle counts as a line) with three points on every line and three lines through every point.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

2.6 Gino Fano

Gino Fano (5 January 1871 to 8 November 1952) was an Italian mathematician. He was born in Mantua and died in Verona. Fano worked on projective and algebraic geometry; the Fano plane, Fano fibration, Fano surface, and Fano varieties are named for him. Ugo Fano and Robert Fano were his sons.

うして ふゆう ふほう ふほう うらつ

2.8 Cayley-Dickson

Octonion

$$O = O^{0}e_{0} + O^{1}e_{1} + O^{2}e_{2} + O^{3}e_{3} + O^{4}e_{4} + O^{5}e_{5} + O^{6}e_{6} + O^{7}e_{7}$$
$$= H(0) + e_{3}H(1)$$

Quaternion

$$H(0) = O^{0}e_{0} + O^{1}e_{1} + O^{2}e_{2} + O^{4}e_{4} \quad H(1) = O^{3}e_{0} - O^{7}e_{1} - O^{5}e_{2} + O^{6}e_{4}$$
$$H(0) = C(00) + e_{2}C(10) \quad H(1) = C(01) + e_{2}C(11)$$

• Complex

$$C(00) = O^{0}e_{0} + O^{1}e_{1} \quad C(01) = O^{3}e_{0} - O^{7}e_{1}$$

$$C(10) = O^{2}e_{0} - O^{4}e_{1} \quad C(11) = -O^{5}e_{0} - O^{6}e_{1}$$

$$C(00) = R(000) + e_{1}R(100) \quad C(01) = R(001) + e_{1}R(101)$$

$$C(10) = R(010) + e_{1}(110) \quad C(11) = R(011) + e_{1}R(111)$$

Real

$$R(000) = O^{0} R(100) = O^{1} R(001) = O^{3} R(101) = -O^{7}$$

$$R(010) = O^{2} R(110) = -O^{4} R(011) = O^{5} R(111) = O^{6} P^{6} P^{6}$$

2.7 Division algebras

- Division: ax+b=0 has a unique solution
- Associative: a(bc)=(ab)c
- Commutative: ab=ba

A	construction	division?	associative?	commutative?	ordered?
R	R	yes	yes	yes	yes
С	$R + e_1 R$	yes	yes	yes	no
Н	$C + e_2 C$	yes	yes	no	no
0	$H + e_3 H$	yes	no	no	no
S	$O + e_4 O$	no	no	no	no

• As we shall see, the mathematical cut-off of division algebras at octonions corresponds to a physical cutoff at 16 component spinors in super Yang-Mills.

2.8 Norm-preserving algebras

- To understand the symmetries of the magic square and its relation to YM we shall need in particular two algebras defined on A.
- First, the algebra $\mathfrak{norm}(\mathbb{A})$ that preserves the norm

$$\langle x|y\rangle := \frac{1}{2}(x\overline{y} + y\overline{x}) = x^a y^b \delta_{ab}$$

$$norm(\mathbb{R}) = 0$$

$$norm(\mathbb{C}) = \mathfrak{so}(2)$$

$$norm(\mathbb{H}) = \mathfrak{so}(4)$$

$$norm(\mathbb{O}) = \mathfrak{so}(8)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

2.9 Triality Algebra

 \bullet Second, the triality algebra $\mathfrak{tri}(\mathrm{A})$

 $\mathfrak{tri}(\mathbb{A}) \equiv \{(A, B, C) | A(xy) = B(x)y + xC(y)\}, A, B, C \in \mathfrak{so}(n), x, y \in \mathbb{A}.$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

$$tri(\mathbb{R}) = 0$$

$$tri(\mathbb{C}) = \mathfrak{so}(2) + \mathfrak{so}(2)$$

$$tri(\mathbb{H}) = \mathfrak{so}(3) + \mathfrak{so}(3) + \mathfrak{so}(3)$$

$$tri(\mathbb{O}) = \mathfrak{so}(8)$$

[Barton and Sudbery:2003]:

3.1 Yang-Mills spin-off: interesting in its own right

- We give a unified description of
 - D=3 Yang-Mills with $\mathcal{N}=1,2,4,8$
 - D = 4 Yang-Mills with $\mathcal{N} = 1, 2, 4$
 - D=6 Yang-Mills with $\mathcal{N}=1,2$
 - D = 10 Yang-Mills with $\mathcal{N} = 1$

in terms of a pair of division algebras ($\mathbb{A}_n, \mathbb{A}_{n\mathcal{N}}$), n = D - 2

- We present a master Lagrangian, defined over $\mathbb{A}_{n\mathcal{N}}$ -valued fields, which encapsulates all cases.
- The overall (spacetime plus internal) on-shell symmetries are given by the corresponding *triality* algebras.
- We use imaginary $A_{n\mathcal{N}}$ -valued auxiliary fields to close the non-maximal supersymmetry algebra off-shell. The failure to close off-shell for maximally supersymmetric theories is attributed directly to the non-associativity of the octonions.
 - [arXiv:1309.0546
 - A. Anastasiou, L. Borsten, M. J. Duff, L. J. Hughes and S. Nagy]

3.2 $D = 3, \mathcal{N} = 8$ Yang-Mills

• The D = 3, $\mathcal{N} = 8$ super YM action is given by

$$\begin{split} S &= \int d^3 x \left(-\frac{1}{4} F^A_{\mu\nu} F^{A\mu\nu} - \frac{1}{2} D_\mu \phi^A_i D^\mu \phi^A_i + i \bar{\lambda}^A_a \gamma^\mu D_\mu \lambda^A_a \right. \\ &\left. -\frac{1}{4} g^2 f_{BC}{}^A f_{DE}{}^A \phi^B_i \phi^D_j \phi^C_j \phi^E_j - g f_{BC}{}^A \phi^B_i \bar{\lambda}^{Aa} \Gamma^i_{ab} \lambda^{Cb} \right), \end{split}$$

where the Dirac matrices Γ^{i}_{ab} , i = 1, ..., 7, a, b = 0, ..., 7, belong to the SO(7) Clifford algebra.

The key observation is that Γⁱ_{ab} can be represented by the octonionic structure constants,

$$\Gamma^{i}_{ab} = i(\delta_{bi}\delta_{a0} - \delta_{b0}\delta_{ai} + C_{iab}),$$

which allows us to rewrite the action over octonionic fields

3.3 Transformation rules

• The supersymmetry transformations in this language are given by

$$\delta\lambda^{A} = \frac{1}{2}(F^{A\mu\nu} + \varepsilon^{\mu\nu\rho}D_{\rho}\phi^{A})\sigma_{\mu\nu}\epsilon + \frac{1}{2}gf_{BC}{}^{A}\phi^{B}_{i}\phi^{C}_{j}\sigma_{ij}\epsilon,$$

$$\delta A^{A}_{\mu} = \frac{i}{2}(\bar{\epsilon}\gamma_{\mu}\lambda^{A} - \bar{\lambda}^{A}\gamma_{\mu}\epsilon),$$

$$\delta\phi^{A} = \frac{i}{2}e_{i}[(\bar{\epsilon}e_{i})\lambda^{A} - \bar{\lambda}^{A}(e_{i}\epsilon)],$$
(2)

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

where $\sigma_{\mu\nu}$ are the generators of SL(2, \mathbb{R}) \cong SO(1, 2).

4.1 Global symmetries of supergravity in D=3

• MATHEMATICS: Division algebras: *R*, *C*, *H*, *O*

 $(DIVISION ALGEBRAS)^2 = MAGIC SQUARE OF LIE ALGEBRAS$

• PHYSICS: *N* = 1, 2, 4, 8 *D* = 3 *Yang* – *Mills*

 $(YANG - MILLS)^2 = MAGIC SQUARE OF SUPERGRAVITIES$

• CONNECTION: *N* = 1, 2, 4, 8 ~ *R*, *C*, *H*, *O*

MATHEMATICS MAGIC SQUARE = PHYSICS MAGIC SQUARE

• The D = 3 G/H grav symmetries are given by ym symmetries $G(grav) = tri ym(L) + tri ym(R) + 3[ym(L) \times ym(R)].$

eg

$$E_{8(8)} = SO(8) + SO(8) + 3(0 \times 0)$$

248 = 28 + 28 + (8_v, 8_v) + (8_s, 8_s) + (8_c, 8_c)

4.2 Squaring $\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$ Yang-Mills in D = 3

Taking a left SYM multiplet

$$\{A_{\mu}(L) \in \operatorname{Re}\mathbb{A}_{L}, \quad \phi(L) \in \operatorname{Im}\mathbb{A}_{L}, \quad \lambda(L) \in \mathbb{A}_{L}\}$$

and tensoring with a right multiplet

$$\{A_{\mu}(R)\in {\sf Re}{\Bbb A}_R, \quad \phi(R)\in {\sf Im}{\Bbb A}_R, \quad \lambda(R)\in {\Bbb A}_R\}$$

we obtain the field content of a supergravity theory valued in both \mathbb{A}_L and \mathbb{A}_R :

$\mathbb{A}_L/\mathbb{A}_R$	$A_{\mu}(R)\in \mathrm{Re}\mathbb{A}_{R}$	$\phi(R)\in {\rm Im}\mathbb{A}_R$	$\lambda(R)\in \mathbb{A}_R$
$A_{\mu}(L) \in \operatorname{Re}\mathbb{A}_{L}$	$g_{\mu u} + arphi \in \operatorname{Re}\mathbb{A}_L \otimes \operatorname{Re}\mathbb{A}_R$	$\varphi \in \mathrm{Re}\mathbb{A}_L \otimes \mathrm{Im}\mathbb{A}_R$	$\Psi_\mu + \chi \in \mathrm{Re}\mathbb{A}_L \otimes \mathbb{A}_R$
$\phi(L)\in {\rm Im}\mathbb{A}_L$	$\varphi\in\mathrm{Im}\mathbb{A}_L\otimes\mathrm{Re}\mathbb{A}_R$	$\varphi\in\mathrm{Im}\mathbb{A}_L\otimes\mathrm{Im}\mathbb{A}_R$	$\chi \in \mathrm{Im}\mathbb{A}_L\otimes\mathbb{A}_R$
$\lambda(L) \in \mathbb{A}_L$	$\Psi_\mu + \chi \in \mathbb{A}_L \otimes \operatorname{Re}\mathbb{A}_R$	$\chi\in\mathbb{A}_L\otimes\mathrm{Im}\mathbb{A}_R$	$\varphi \in \mathbb{A}_L \otimes \mathbb{A}_R$

Grouping spacetime fields of the same type we find,

$$g_{\mu
u} \in \mathbb{R}, \quad \Psi_{\mu} \in \begin{pmatrix} \mathbb{A}_{L} \\ \mathbb{A}_{R} \end{pmatrix}, \quad \varphi \in \begin{pmatrix} \mathbb{A}_{L} \otimes \mathbb{A}_{R} \\ \mathbb{A}_{L} \otimes \mathbb{A}_{R} \end{pmatrix}, \quad \chi \in \begin{pmatrix} \mathbb{A}_{L} \otimes \mathbb{A}_{R} \\ \mathbb{A}_{L} \otimes \mathbb{A}_{R} \end{pmatrix}$$

4.3 Grouping together

• Grouping spacetime fields of the same type we find,

$$g_{\mu\nu} \in \mathbb{R}, \quad \Psi_{\mu} \in \begin{pmatrix} \mathbb{A}_{L} \\ \mathbb{A}_{R} \end{pmatrix}, \quad \varphi, \chi \in \begin{pmatrix} \mathbb{A}_{L} \otimes \mathbb{A}_{R} \\ \mathbb{A}_{L} \otimes \mathbb{A}_{R} \end{pmatrix}.$$
 (3)

うして ふゆう ふほう ふほう うらつ

- Note we have dualised all resulting *p*-forms, in particular vectors to scalars. The ℝ-valued graviton and A_L ⊕ A_R-valued gravitino carry no degrees of freedom. The (A_L ⊗ A_R)²-valued scalar and Majorana spinor each have 2(dim A_L × dim A_R) degrees of freedom.
- Fortunately, $\mathbb{A}_L \oplus \mathbb{A}_R$ and $(\mathbb{A}_L \otimes \mathbb{A}_R)^2$ are precisely the representation spaces of the vector and (conjugate) spinor. For example, in the maximal case of \mathbb{A}_L , $\mathbb{A}_R = \mathbb{O}$, we have the **16**, **128** and **128**' of SO(16).

	R	С	н	0
R				$ \begin{array}{l} \mathcal{N} = 9, f = 32 \\ G = F_{4(-20)}, \dim 52 \\ H = \mathrm{SO}(9), \dim 36 \end{array} $
c	$\mathcal{N} = 3, f = 8$ $G = SU(2, 1), \dim 8$ $H = SU(2) \times SO(2), \dim 4$	$ \begin{split} \mathcal{N} &= 4, f = 16 \\ G &= \mathrm{SU}(2,1)^2, \mathrm{dim} 16 \\ H &= \mathrm{SU}(2)^2 \times \mathrm{SO}(2)^2, \mathrm{dim} 8 \end{split} $	$ \begin{array}{l} \mathcal{N} = 6, f = 32 \\ G = {\rm SU}(4,2), \dim 35 \\ H = {\rm SU}(4) \times {\rm SU}(2) \times {\rm SO}(2), \dim 19 \end{array} $	$ \begin{split} \mathcal{N} &= 10, f = 64 \\ G &= E_{6(-14)}, \dim 78 \\ H &= \mathrm{SO}(10) \times \mathrm{SO}(2), \dim 46 \end{split} $
н	$ \begin{array}{l} \mathcal{N} = 5, f = 16 \\ G = \mathrm{USp}(4,2), \mathrm{dim} 21 \\ H = \mathrm{USp}(4) \times \mathrm{USp}(2), \mathrm{dim} 13 \end{array} $	$ \begin{array}{l} \mathcal{N} = 6, f = 32 \\ G = {\rm SU}(4,2), \dim 35 \\ H = {\rm SU}(4) \times {\rm SU}(2) \times {\rm SO}(2), \dim 19 \end{array} $	$ \begin{array}{l} \mathcal{N} = 8, f = 64 \\ G = {\rm SO}(8,4), \dim 66 \\ H = {\rm SO}(8) \times {\rm SO}(4), \dim 34 \end{array} $	$ \begin{array}{l} \mathcal{N} = 12, f = 128 \\ G = E_{7(-5)}, \dim 133 \\ H = \mathrm{SO}(12) \times \mathrm{SO}(3), \dim 69 \end{array} $
0	$ \begin{array}{l} \mathcal{N} = 9, f = 32 \\ G = F_{4(-20)}, \dim 52 \\ H = \mathrm{SO}(9), \dim 36 \end{array} $	$ \begin{array}{l} \mathcal{N} = 10, f = 64 \\ G = E_{6(-14)}, \dim 78 \\ H = \mathrm{SO}(10) \times \mathrm{SO}(2), \dim 46 \end{array} $	$ \begin{array}{l} \mathcal{N} = 12, f = 128 \\ G = E_{7(-5)}, \dim 133 \\ H = \mathrm{SO}(12) \times \mathrm{SO}(3), \dim 69 \end{array} $	$ \begin{array}{l} \mathcal{N} = 16, f = 256 \\ G = E_{8(8)}, \dim 248 \\ H = \mathrm{SO}(16), \dim 120 \end{array} $

• The N > 8 supergravities in D = 3 are unique, all fields belonging to the gravity multiplet, while those with $N \leq 8$ may be coupled to k additional matter multiplets [Marcus and Schwarz:1983; deWit, Tollsten and Nicolai:1992]. The real miracle is that tensoring left and right YM multiplets yields the field content of N = 2, 3, 4, 5, 6, 8supergravity with k = 1, 1, 2, 1, 2, 4: just the right matter content to produce the U-duality groups appearing in the magic square.

4.5. Conclusion

• In both cases the field content is such that the U-dualities exactly match the groups of of the magic square:

A_L/A_R	\mathbb{R}	$\mathbb C$	\mathbb{H}	\mathbb{O}
\mathbb{R}	SL(2, ℝ)	SU(2,1)	USp(4, 2)	$F_{4(-20)}$
\mathbb{C}	SU(2,1)	$SU(2,1) \times SU(2,1)$	SU(4,2)	$E_{6(-14)}$
\mathbb{H}	USp(4,2)	SU(4,2)	SO(8,4)	$E_{7(-5)}$
0	$F_{4(-20)}$	$E_{6(-14)}$	$E_{7(-5)}$	$E_{8(8)}$

Table : Magic square

• The *G*/*H* U-duality groups are precisely those of the Freudenthal Magic Square!

$$G: \quad \mathfrak{g}_3(\mathbb{A}_L,\mathbb{A}_R):=\mathfrak{tri}(\mathbb{A}_L)+\mathfrak{tri}(\mathbb{A}_R)+3(\mathbb{A}_L imes\mathbb{A}_R).$$

$$H: \quad \mathfrak{g}_1(\mathbb{A}_L,\mathbb{A}_R):=\mathfrak{tri}(\mathbb{A}_L)+\mathfrak{tri}(\mathbb{A}_R)+(\mathbb{A}_L\times\mathbb{A}_R).$$

4.5a Projective planes?

- U-dualities G are realised non-linearly on the scalars, which parametrise the symmetric spaces G/H.
- This can be understood using the remarkable identity relating the projective planes over $(\mathbb{A}_L \otimes \mathbb{A}_R)^2$ to G/H,

$$(\mathbb{A}_L \otimes \mathbb{A}_R)\mathbb{P}^2 \cong G/H.$$

うして ふゆう ふほう ふほう うらつ

The scalar fields may be regarded as points in division-algebraic projective planes [Baez:2001, Freudenthal:1964, Landsberg2001].

• See also [Atiyah and Berndt:2002].

4.6 Magic Pyramid: G symmetries

<□> <@> < 注→ < 注→ < 注→ < 注→ の <

4.7 Summary Gravity: Conformal Magic Pyramid

- We also construct a *conformal* magic pyramid by tensoring conformal supermultiplets in D = 3, 4, 6.
- The missing entry in D = 10 is suggestive of an exotic theory with G/H duality structure $F_{4(4)}/Sp(3) \times Sp(1)$.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

4.8 Conformal Magic Pyramid: G symmetries

<□> <@> < 注→ < 注→ < 注→ < 注→ のへ()

5.1 Generalized mirror symmetry: M-theory on X^7

• We consider compactification of $(\mathcal{N} = 1, D = 11)$ supergravity on a 7-manifold X^7 with betti numbers $(b_0, b_1, b_2, b_3, b_3, b_2, b_1, b_0)$ and define a generalized mirror symmetry

$$(b_0, b_1, b_2, b_3) \rightarrow (b_0, b_1, b_2 - \rho/2, b_3 + \rho/2)$$

under which

$$\rho(X^7) \equiv 7b_0 - 5b_1 + 3b_2 - b_3$$

changes sign

$$\rho \to -\rho$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

[Duff and Ferrara:2010]

• Generalized self-mirror theories are defined to be those for which $\rho=\mathbf{0}$

5.2 Anomalies

	Field	f	ΔA	360 <i>A</i>	360 <i>A</i> ′	X ⁷
₿мN	$g_{\mu u}$	2	-3	848	-232	b_0
	\mathcal{A}_{μ}	2	0	-52	-52	b_1
	\mathcal{A}	1	0	4	4	$-b_{1} + b_{3}$
ψ_{M}	ψ_{μ}	2	1	-233	127	$b_0 + b_1$
	χ	2	0	7	7	$b_2 + b_3$
A _{MNP}	$A_{\mu u ho}$	0	2	-720	0	b_0
	$A_{\mu\nu}$	1	-1	364	4	b_1
	A_{μ}	2	0	-52	-52	<i>b</i> ₂
	À	1	0	4	4	<i>b</i> ₃

 $\begin{array}{ccc} total \ \Delta A & 0 \\ total \ A & -\rho/24 \\ total \ A' & -\rho/24 \end{array}$

Table : X^7 compactification of D=11 supergravity

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

5.3 Vanish without a trace!

 $\bullet\,$ Remarkably, we find that the anomalous trace depends on $\rho\,$

$$A = -\frac{1}{24}\rho(X^7)$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

So the anomaly flips sign under generalized mirror symmetry and vanishes for generalized self-mirror theories.

• Equally remarkable is that we get the same answer for the total trace using the numbers of Grisaru et al 1980.

5.4 Squaring Yang-Mills in D = 4 and the self-mirror condition

• Tensoring left and right supersymmetric Yang-Mills theories with field content $(A_{\mu}, N_L\chi, 2(N_L - 1)\phi)$ and $(A_{\mu}, N_R\chi, 2(N_R - 1)\phi)$ yields an $N = N_L + N_R$ supergravity theory.

$L \setminus R$	${\cal A}_{\mu}$	$N_R\chi$	$2(N_R-1)\phi$
A_{μ}	$g_{\mu u}+2\phi$	$N_R(\psi_\mu + \chi)$	$2(N_R-1)A_\mu$
$N_L\chi$	$N_L(\psi_\mu+\chi)$	$N_L N_R (A_\mu + 2\phi)$	$2N_L(N_R-1)\chi$
$2(N_L-1)\phi$	$2(N_L-1)A_\mu$	$2(N_L-1)N_R\chi$	$4(N_L-1)(N_R-1)\phi$

Table : Tensoring N_L and N_R super Yang-Mills theories in D = 4. Note that we have dualized the 2-form coming from the vector-vector slot

5.5 Betti numbers from squaring Yang-Mills

• The betti numbers may then be read off from the Table and we find

$$(b_0, b_1, b_2, b_3) =$$

 $(1, N_L + N_R - 1, N_L N_R + N_L + N_R - 3, 3N_L N_R - 2N_L - 2N_R + 3)$ Consequently

$$\rho(X^{7}) = 7b_{0} - 5b_{1} + 3b_{2} - b_{3} = 0$$
(4)

• Similar results hold in D = 5 where

 $(c_0, c_1, c_2, c_3) = (1, N_L + N_R - 2, N_L N_R - 1, 2N_L N_R - 2N_L - 2N_R + 4)$

Consequently

$$\chi(X^{6}) = 2b_{0} - 2c_{1} + 2c_{2} - c_{3} = 0$$
(5)
(5)