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1.0 Basic idea

Strong nuclear, Weak nuclear and Electromagnetic forces described
by Yang-Mills gauge theory (non-abelian generalisation of Maxwell).

Gluons, W, Z and photons have spin 1.

Gravitational force described by Einstein’s general relativity.

Gravitons have spin 2.

But maybe GRAVITY = (YANG −MILLS)2

If so, gravitational symmetries should follow from those of Yang-Mills



1.1 Gravity as square of Yang-Mills

A recurring theme in attempts to understand the quantum theory of
gravity and appears in several different forms:
Closed states from products of open states and KLT relations in
string theory [Kawai:1985, Siegel:1988],
On-shell D = 10 Type IIA and IIB supergravity representations from
on-shell D = 10 super Yang-Mills representations [Green:1987],
Supergravity scattering amplitudes from those of super Yang-Mills in
various dimensions, [Bern:2008, Bern: 2010,
2012,Bianchi:2008,Huang:2012,Cachazo:2013,Dolan:2013]
Ambitwistor strings [Hodges:2011, Mason:2013, Geyer:2014]
Vector theory of gravity [arXiv:0904.3155 [gr-qc] Anatoly A.
Svidzinsky (Texas A-M)]



1.2 Local and global symmetries from Yang-Mills

LOCAL SYMMETRIES: general covariance, local lorentz invariance,
local supersymmtry, local p-form gauge invariance

[ arXiv:1408.4434
A. Anastasiou, L. Borsten, M. J. Duff, L. J. Hughes and S. Nagy]

GLOBAL SYMMETRIES eg G = E7 in D = 4,N = 8 supergravity

[arXiv:1301.4176 arXiv:1312.6523 arXiv:1402.4649
A. Anastasiou, L. Borsten, M. J. Duff, L. J. Hughes and S. Nagy]

YANG-MILLS SPIN-OFF (interesting in its own right): Unified
description of (D = 3;N = 1, 2, 4, 8), (D = 4;N = 1, 2, 4),
(D = 6;N = 1, 2), (D = 10;N = 1) Yang-Mills in terms of a pair of
division algebras (An,AnN ), n = D − 2 [arXiv:1309.0546

A. Anastasiou, L. Borsten, M. J. Duff, L. J. Hughes and S. Nagy]

GENERALIZED SELF-MIRROR CONDITION AND VANISHING
TRACE ANOMALIES



1.3 Product?

Although much of the squaring literature invokes taking a product of
left and right Yang-MiIls fields

Aµ(x)(L)⊗ Aν(x)(R)

it is hard to find a conventional field theory definition of the product.
Where do the gauge indices go? Does it obey the Leibnitz rule

∂µ(f ⊗ g) = (∂µf )⊗ g + f ⊗ (∂µg)

If not, why not?



1.4 Convolution

Here we present a GL × GR product rule :

[Aµi (L) ? Φii ′ ? Aν i ′(R)](x)

where Φii ′ is the “spectator” bi-adjoint scalar field introduced by
Hodges [Hodges:2011] and Cachazo et al [Cachazo:2013] and where
? denotes a convolution

[f ? g ](x) =

∫
d4yf (y)g(x − y).

Note f ? g = g ? f , (f ? g) ? h = f ? (g ? h), and, importantly obeys

∂µ(f ? g) = (∂µf ) ? g = f ? (∂µg)

and not Leibnitz

∂µ(f ⊗ g) = (∂µf )⊗ g + f ⊗ (∂µg)



1.5 Gravity/Yang-Mills dictionary

For concreteness we focus on
N = 1 supergravity in D = 4, obtained by tensoring the (4 + 4)
off-shell NL = 1 Yang-Mills multiplet (Aµ(L), χ(L),D(L)) with the
(3 + 0) off-shell NR = 0 multiplet Aµ(R).
Interestingly enough, this yields the new-minimal formulation of
N = 1 supergravity [Sohnius:1981] with its 12+12 multiplet
(hµν , ψµ,Vµ,Bµν)

The dictionary is,

Zµν ≡ hµν + Bµν = Aµi (L) ? Φii ′ ? Aν i ′(R)

ψν = χi (L) ? Φii ′ ? Aν i ′(R)

Vν = D i (L) ? Φii ′ ? Aν i ′(R),



1.6 Yang-Mills symmetries

The left supermultiplet is described by a vector superfield V i (L)
transforming as

δV i (L) = Λi (L) + Λ̄i (L) + f i
jkV j(L)θk(L)

+ δ(a,λ,ε)V i (L).

Similarly the right Yang-Mills field Aν i ′(R) transforms as

δAν i ′(R) = ∂νσ
i ′(R) + f i ′

j′k′Aν j′(R)θk′
(R)

+ δ(a,λ)Aν i ′(R).

and the spectator as

δΦii ′ = −f j
ikΦji ′θ

k(L)− f j′
i ′k′Φij′θ

k′
(R) + δaΦii ′ .

Plugging these into the dictionary gives the gravity transformation rules.



1.7 Gravitational symmetries

δZµν = ∂ναµ(L) + ∂µαν(R),
δψµ = ∂µη,
δVµ = ∂µΛ,

where
αµ(L) = Aµi (L) ? Φii ′ ? σi ′(R),

αν(R) = σi (L) ? Φii ′ ? Aν i ′(R),

η = χi (L) ? Φii ′ ? σi ′(R),

Λ = D i (L) ? Φii ′ ? σi ′(R),

illustrating how the local gravitational symmetries of general covariance,
2-form gauge invariance, local supersymmetry and local chiral symmetry
follow from those of Yang-Mills.



1.8 Supersymmetry

We also recover from the dictionary the component supersymmetry
variation of [Sohnius:1981],

δεZµν = −4i ε̄γνψµ,
δεψµ = − i

4σ
kλε∂kgλµ + γ5εVµ

− γ5εHµ − i
2σµνγ5εHν ,

δεVµ = −ε̄γµσκλγ5∂κψλ.



1.9 Lorentz multiplet

New minimal supergravity also admits an off-shell Lorentz multiplet
(Ωµab

−, ψab,−2Vab
+) transforming as

δVab = Λab + Λ̄ab + δ(a,λ,ε)Vab. (1)

This may also be derived by tensoring the left Yang-Mills superfield V i (L)
with the right Yang-Mills field strength F abi ′(R) using the dictionary

Vab = V i (L) ? Φii ′ ? F abi ′(R),

Λab = Λi (L) ? Φii ′ ? F abi ′(R).



1.10 Bianchi identities

The corresponding Riemann and Torsion tensors are given by

R+
µνρσ = −Fµν i (L) ? Φii ′ ? Fρσ i ′(R) = R−ρσµν .

T+
µνρ = −F[µν

i (L)?Φii ′?Aρ]i
′
(R) = −A[ρ

i (L)?Φii ′?Fµν]i
′
(R) = −T−µνρ

One can show that (to linearised order) the gravitational Bianchi
identities follow from those of Yang-Mills

D[µ(L)Fνρ]I (L) = 0 = D[µ(R)Fνρ]I
′
(R)



1.11 To do

Convoluting the off-shell Yang-Mills multiplets (4 + 4,NL = 1) and
(3 + 0,NR = 0) yields the 12 + 12 new-minimal off-shell N = 1
supergravity.
We expect that convoluting the off-shell general multiplet
(8 + 8,NL = 1) and (3 + 0,NR = 0) yields the 24 + 24 non-minimal
off-shell N = 1 supergravity [Breitenlohner:1977].
We expect convoluting (4 + 4,NL = 1) and (4 + 4,NR = 1) yields
the 32 + 32 minimal off-shell N = 2 supergravity [Fradkin:1979,
deWit:1979, Breitenlohner:1979, Breitenlohner:1980]. The latter
would involve bosons from the product of left and right fermions.
Clearly two important improvements would be to generalise our
results to the full non-linear transformation rules and to address the
issue of dynamics as well as symmetries.



2.1 Division algebras

Mathematicians deal with four kinds of numbers, called Divison
Algebras.
The Octonions occupy a privileged position :

Name Symbol Imaginary parts

Reals R 0
Complexes C 1
Quaternions H 3
Octonions O 7

Table : Division Algebras



2.2 Lie algebras

They provide an intuitive basis for the exceptional Lie algebras:

Classical algebras Rank Dimension

An SU(n + 1) n (n + 1)2 − 1
Bn SO(2n + 1) n n(2n + 1)
Cn Sp(2n) n n(2n + 1)
Dn SO(2n) n n(2n − 1)

Exceptional algebras

E6 6 78
E7 7 133
E8 8 248
F4 4 52
G2 2 14

Table : Classical and exceptional Lie alebras



2.3 Magic square

Freudenthal-Rozenfeld-Tits magic square

AL/AR R C H O

R A1 A2 C3 F4
C A2 A2 + A2 A5 E6
H C3 A5 D6 E7
O F4 E6 E7 E8

Table : Magic square

Despite much effort, however, it is fair to say that the ultimate
physical significance of octonions and the magic square remains an
enigma.



2.4 Octonions

Octonion x given by
x = x0e0 + x10e1 + x2e2 + x3e3 + x4e4 + x5e5 + x6e6 + x7e7,
One real e0 = 1 and seven ei , i = 1, . . . , 7 imaginary elements, where
e∗0 = e0 and e∗i = −ei .
The imaginary octonionic multiplication rules are,

eiej = −δij + Cijkek [ei , ej , ek ] = 2Qijklel

Cmnp are the octonionic structure constants, the set of oriented lines
of the Fano plane.

{ijk} = {124, 235, 346, 457, 561, 672, 713}.

Qijkl are the associators the set of oriented quadrangles in the Fano
plane:

ijkl = {3567, 4671, 5712, 6123, 7234, 1345, 2456},

Qijkl = − 1
3!

Cmnpεmnpijkl .



2.5 Fano plane

The Fano plane has seven points and seven lines (the circle counts as a
line) with three points on every line and three lines through every point.

Fano plane



2.6 Gino Fano

Gino Fano (5 January 1871 to 8 November 1952) was an Italian
mathematician. He was born in Mantua and died in Verona.
Fano worked on projective and algebraic geometry; the Fano plane, Fano
fibration, Fano surface, and Fano varieties are named for him.
Ugo Fano and Robert Fano were his sons.



2.8 Cayley-Dickson

Octonion

O = O0e0 + O1e1 + O2e2 + O3e3 + O4e4 + O5e5 + O6e6 + O7e7

= H(0) + e3H(1)

Quaternion

H(0) = O0e0+O1e1+O2e2+O4e4 H(1) = O3e0−O7e1−O5e2+O6e4

H(0) = C (00) + e2C (10) H(1) = C (01) + e2C (11)

Complex

C (00) = O0e0 + O1e1 C (01) = O3e0 − O7e1

C (10) = O2e0 − O4e1 C (11) = −O5e0 − O6e1

C (00) = R(000) + e1R(100) C (01) = R(001) + e1R(101)

C (10) = R(010) + e1(110) C (11) = R(011) + e1R(111)

Real

R(000) = O0 R(100) = O1 R(001) = O3 R(101) = −O7

R(010) = O2 R(110) = −O4 R(011) = −O5 R(111) = −O6



2.7 Division algebras

Division: ax+b=0 has a unique solution
Associative: a(bc)=(ab)c
Commutative: ab=ba

A construction division? associative? commutative? ordered?

R R yes yes yes yes
C R + e1R yes yes yes no
H C + e2C yes yes no no
O H + e3H yes no no no

S O + e4O no no no no

As we shall see, the mathematical cut-off of division algebras at
octonions corresponds to a physical cutoff at 16 component spinors
in super Yang-Mills.



2.8 Norm-preserving algebras

To understand the symmetries of the magic square and its relation
to YM we shall need in particular two algebras defined on A.
First, the algebra norm(A) that preserves the norm

〈x |y〉 :=
1
2

(xy + yx) = xaybδab

norm(R) = 0
norm(C) = so(2)

norm(H) = so(4)

norm(O) = so(8)



2.9 Triality Algebra

Second, the triality algebra tri(A)

tri(A) ≡ {(A,B,C )|A(xy) = B(x)y+xC (y)}, A,B,C ∈ so(n), x , y ∈ A.

tri(R) = 0
tri(C) = so(2) + so(2)

tri(H) = so(3) + so(3) + so(3)

tri(O) = so(8)

[Barton and Sudbery:2003]:



3.1 Yang-Mills spin-off: interesting in its own right

We give a unified description of
D = 3 Yang-Mills with N = 1, 2, 4, 8
D = 4 Yang-Mills with N = 1, 2, 4
D = 6 Yang-Mills with N = 1, 2
D = 10 Yang-Mills with N = 1
in terms of a pair of division algebras (An,AnN ), n = D − 2
We present a master Lagrangian, defined over AnN -valued fields,
which encapsulates all cases.
The overall (spacetime plus internal) on-shell symmetries are given
by the corresponding triality algebras.
We use imaginary AnN -valued auxiliary fields to close the
non-maximal supersymmetry algebra off-shell. The failure to close
off-shell for maximally supersymmetric theories is attributed directly
to the non-associativity of the octonions.
[arXiv:1309.0546
A. Anastasiou, L. Borsten, M. J. Duff, L. J. Hughes and S. Nagy]



3.2 D = 3,N = 8 Yang-Mills

The D = 3, N = 8 super YM action is given by

S =

∫
d3x

(
−1
4
FA
µνF

Aµν − 1
2
DµφA

i DµφA
i + i λ̄A

a γ
µDµλA

a

−1
4
g2fBC

AfDE
AφB

i φ
D
i φ

C
j φ

E
j − gfBC

AφB
i λ̄

AaΓi
abλ

Cb
)
,

where the Dirac matrices Γi
ab, i = 1, . . . , 7, a, b = 0, . . . , 7, belong

to the SO(7) Clifford algebra.
The key observation is that Γi

ab can be represented by the octonionic
structure constants,

Γi
ab = i(δbiδa0 − δb0δai + Ciab),

which allows us to rewrite the action over octonionic fields



3.3 Transformation rules

The supersymmetry transformations in this language are given by

δλA =
1
2

(FAµν + εµνρDρφA)σµνε+
1
2
gfBC

AφB
i φ

C
j σijε,

δAA
µ =

i
2

(ε̄γµλ
A − λ̄Aγµε), (2)

δφA =
i
2
ei [(ε̄ei )λ

A − λ̄A(eiε)],

where σµν are the generators of SL(2,R) ∼= SO(1, 2).



4.1 Global symmetries of supergravity in D=3

MATHEMATICS: Division algebras: R,C ,H,O

(DIVISION ALGEBRAS)2 = MAGIC SQUARE OF LIE ALGEBRAS

PHYSICS: N = 1, 2, 4, 8 D = 3 Yang −Mills

(YANG −MILLS)2 = MAGIC SQUARE OF SUPERGRAVITIES

CONNECTION: N = 1, 2, 4, 8 ∼ R,C ,H,O

MATHEMATICS MAGIC SQUARE = PHYSICS MAGIC SQUARE

The D = 3 G/H grav symmetries are given by ym symmetries

G (grav) = tri ym(L) + tri ym(R) + 3[ym(L)× ym(R)].

eg
E8(8) = SO(8) + SO(8) + 3(O×O)

248 = 28 + 28 + (8v , 8v ) + (8s , 8s) + (8c , 8c)



4.2 Squaring R,C,H,O Yang-Mills in D = 3

Taking a left SYM multiplet

{Aµ(L) ∈ ReAL, φ(L) ∈ ImAL, λ(L) ∈ AL}

and tensoring with a right multiplet

{Aµ(R) ∈ ReAR , φ(R) ∈ ImAR , λ(R) ∈ AR}

we obtain the field content of a supergravity theory valued in both AL
and AR :

Grouping spacetime fields of the same type we find,

gµν ∈ R, Ψµ ∈
(
AL
AR

)
, ϕ ∈

(
AL ⊗AR
AL ⊗AR

)
, χ ∈

(
AL ⊗AR
AL ⊗AR

)



4.3 Grouping together

Grouping spacetime fields of the same type we find,

gµν ∈ R, Ψµ ∈
(
AL
AR

)
, ϕ, χ ∈

(
AL ⊗AR
AL ⊗AR

)
. (3)

Note we have dualised all resulting p-forms, in particular vectors to
scalars. The R-valued graviton and AL ⊕AR -valued gravitino carry
no degrees of freedom. The (AL ⊗AR)2-valued scalar and Majorana
spinor each have 2(dimAL × dimAR) degrees of freedom.
Fortunately, AL ⊕AR and (AL ⊗AR)2 are precisely the
representation spaces of the vector and (conjugate) spinor. For
example, in the maximal case of AL,AR = O, we have the 16, 128
and 128′ of SO(16).



4.4 Final result

The N > 8 supergravities in D = 3 are unique, all fields belonging
to the gravity multiplet, while those with N ≤ 8 may be coupled to
k additional matter multiplets [Marcus and Schwarz:1983; deWit,
Tollsten and Nicolai:1992]. The real miracle is that tensoring left
and right YM multiplets yields the field content of N = 2, 3, 4, 5, 6, 8
supergravity with k = 1, 1, 2, 1, 2, 4: just the right matter content to
produce the U-duality groups appearing in the magic square.



4.5. Conclusion

In both cases the field content is such that the U-dualities exactly
match the groups of of the magic square:

AL/AR R C H O

R SL(2,R) SU(2, 1) USp(4, 2) F4(−20)
C SU(2, 1) SU(2, 1)× SU(2, 1) SU(4, 2) E6(−14)
H USp(4, 2) SU(4, 2) SO(8, 4) E7(−5)
O F4(−20) E6(−14) E7(−5) E8(8)

Table : Magic square

The G/H U-duality groups are precisely those of the Freudenthal
Magic Square!

G : g3(AL,AR) := tri(AL) + tri(AR) + 3(AL ×AR).

H : g1(AL,AR) := tri(AL) + tri(AR) + (AL ×AR).



4.5a Projective planes?

U-dualities G are realised non-linearly on the scalars, which
parametrise the symmetric spaces G/H.
This can be understood using the remarkable identity relating the
projective planes over (AL ⊗AR)2 to G/H,

(AL ⊗AR)P2 ∼= G/H.

The scalar fields may be regarded as points in division-algebraic
projective planes [Baez:2001, Freudenthal:1964, Landsberg2001].
See also [Atiyah and Berndt:2002].



4.6 Magic Pyramid: G symmetries



4.7 Summary Gravity: Conformal Magic Pyramid

We also construct a conformal magic pyramid by tensoring
conformal supermultiplets in D = 3, 4, 6.
The missing entry in D = 10 is suggestive of an exotic theory with
G/H duality structure F4(4)/Sp(3)× Sp(1).



4.8 Conformal Magic Pyramid: G symmetries



5.1 Generalized mirror symmetry: M-theory on X 7

We consider compactification of (N = 1,D = 11) supergravity on a
7-manifold X 7 with betti numbers (b0, b1, b2, b3, b3, b2, b1, b0) and
define a generalized mirror symmetry

(b0, b1, b2, b3)→ (b0, b1, b2 − ρ/2, b3 + ρ/2)

under which
ρ(X 7) ≡ 7b0 − 5b1 + 3b2 − b3

changes sign
ρ→ −ρ

[Duff and Ferrara:2010]
Generalized self-mirror theories are defined to be those for which
ρ = 0



5.2 Anomalies

Field f ∆A 360A 360A′ X 7

gMN gµν 2 −3 848 −232 b0
Aµ 2 0 −52 −52 b1
A 1 0 4 4 −b1 + b3

ψM ψµ 2 1 −233 127 b0 + b1
χ 2 0 7 7 b2 + b3

AMNP Aµνρ 0 2 −720 0 b0
Aµν 1 −1 364 4 b1
Aµ 2 0 −52 −52 b2
A 1 0 4 4 b3

total ∆A 0
total A −ρ/24
total A′ −ρ/24

Table : X 7 compactification of D=11 supergravity



5.3 Vanish without a trace!

Remarkably, we find that the anomalous trace depends on ρ

A = − 1
24
ρ(X 7)

So the anomaly flips sign under generalized mirror symmetry and
vanishes for generalized self-mirror theories.
Equally remarkable is that we get the same answer for the total
trace using the numbers of Grisaru et al 1980.



5.4 Squaring Yang-Mills in D = 4 and the self-mirror
condition

Tensoring left and right supersymmetric Yang-Mills theories with
field content (Aµ,NLχ, 2(NL − 1)φ) and (Aµ,NRχ, 2(NR − 1)φ)
yields an N = NL + NR supergravity theory.

L \ R Aµ NRχ 2(NR − 1)φ

Aµ gµν + 2φ NR(ψµ + χ) 2(NR − 1)Aµ

NLχ NL(ψµ + χ) NLNR(Aµ + 2φ) 2NL(NR − 1)χ

2(NL − 1)φ 2(NL − 1)Aµ 2(NL − 1)NRχ 4(NL − 1)(NR − 1)φ

Table : Tensoring NL and NR super Yang-Mills theories in D = 4. Note
that we have dualized the 2-form coming from the vector-vector slot



5.5 Betti numbers from squaring Yang-Mills

The betti numbers may then be read off from the Table and we find

(b0, b1, b2, b3) =

(1,NL + NR − 1,NLNR + NL + NR − 3, 3NLNR − 2NL − 2NR + 3)

Consequently

ρ
(
X 7) = 7b0 − 5b1 + 3b2 − b3 = 0

(4)

Similar results hold in D = 5 where

(c0, c1, c2, c3) = (1,NL +NR−2,NLNR−1, 2NLNR−2NL−2NR +4)

Consequently

χ
(
X 6) = 2b0 − 2c1 + 2c2 − c3 = 0

(5)


