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1.0 Basic idea

@ Strong nuclear, Weak nuclear and Electromagnetic forces described
by Yang-Mills gauge theory (non-abelian generalisation of Maxwell).

Gluons, W, Z and photons have spin 1.

o Gravitational force described by Einstein's general relativity.

Gravitons have spin 2.
e But maybe GRAVITY = (YANG — MILLS)?

@ If so, gravitational symmetries should follow from those of Yang-Mills



1.1 Gravity as square of Yang-Mills

@ A recurring theme in attempts to understand the quantum theory of
gravity and appears in several different forms:

o Closed states from products of open states and KLT relations in
string theory [Kawai:1985, Siegel:1988],

@ On-shell D =10 Type IlA and |IB supergravity representations from
on-shell D = 10 super Yang-Mills representations [Green:1987],

@ Supergravity scattering amplitudes from those of super Yang-Mills in
various dimensions, [Bern:2008, Bern: 2010,
2012,Bianchi:2008,Huang:2012,Cachazo0:2013,Dolan:2013]

o Ambitwistor strings [Hodges:2011, Mason:2013, Geyer:2014]

@ Vector theory of gravity [arXiv:0904.3155 [gr-qc] Anatoly A.
Svidzinsky (Texas A-M)]



1.2 Local and global symmetries from Yang-Mills

o LOCAL SYMMETRIES: general covariance, local lorentz invariance,
local supersymmtry, local p-form gauge invariance

[ arXiv:1408.4434

A. Anastasiou, L. Borsten, M. J. Duff, L. J. Hughes and S. Nagy]
o GLOBAL SYMMETRIES eg G = E7 in D = 4, N = 8 supergravity

[arXiv:1301.4176 arXiv:1312.6523 arXiv:1402.4649

A. Anastasiou, L. Borsten, M. J. Duff, L. J. Hughes and S. Nagy]

@ YANG-MILLS SPIN-OFF (interesting in its own right): Unified
description of (D =3; N =1,2,4,8), (D=4N =1,2,4),
(D=6;N=1,2), (D=10; N =1) Yang-Mills in terms of a pair of
division algebras (A, Appr), n = D — 2 [arXiv:1309.0546

A. Anastasiou, L. Borsten, M. J. Duff, L. J. Hughes and S. Nagy]

o GENERALIZED SELF-MIRROR CONDITION AND VANISHING
TRACE ANOMALIES



1.3 Product?

@ Although much of the squaring literature invokes taking a product of
left and right Yang-Mills fields

Au(x)(L) ® Ay (x)(R)

it is hard to find a conventional field theory definition of the product.
Where do the gauge indices go? Does it obey the Leibnitz rule

Iu(fog)=(0uf)®g+f®(0.8)

If not, why not?



1.4 Convolution

@ Here we present a G x Gg product rule :
A (L) * & % A7 (R)(x)
where ®;; is the “spectator” bi-adjoint scalar field introduced by

Hodges [Hodges:2011] and Cachazo et al [Cachazo:2013] and where
* denotes a convolution

(Fl) = [ d*¥F (gt~ ).

Note f xg =g« f,(f xg)xh=f x(g*h), and, importantly obeys
Ou(fxg)=(0.f)xg=Ff*(0.8)

and not Leibnitz

Ou(f®g)=(0uf)®g+f®(0.8)



1.5 Gravity/Yang-Mills dictionary

For concreteness we focus on
e N =1 supergravity in D = 4, obtained by tensoring the (4 + 4)
off-shell V. =1 Yang-Mills multiplet (A, (L), x(L), D(L)) with the
(3 +0) off-shell Ng = 0 multiplet A, (R).
@ Interestingly enough, this yields the new-minimal formulation of
N =1 supergravity [Sohnius:1981] with its 12+12 multiplet
(s s Vi, Buw)

@ The dictionary is,

Zuw =hu +Bu =AS(L) * & x AS(R)
Py =X'(L) * P x AS(R)
v, =Di(L) * ®i « AS(R),



1.6 Yang-Mills symmetries

o The left supermultiplet is described by a vector superfield V(L)
transforming as

SVI(L) = N (L) + N (L) + f i VI(L)ok(L)
+ O V' (L).
Similarly the right Yang-Mills field A,” (R) transforms as
0A,"(R) = 0,0" (R) + 7 e AJ (R)O¥ (R)
+8(a A" (R).
and the spectator as

6P = —F 3 ®5i 0K (L) — 114 ®3 0% (R) + 6,0

Plugging these into the dictionary gives the gravity transformation rules.



1.7 Gravitational symmetries

02, =0y (L) + 0o (R),

5¢u = oun,
0V, =0uN,

where ‘
all) = AL «
ol(L) x

noo= XL
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illustrating how the local gravitational symmetries of general covariance,
2-form gauge invariance, local supersymmetry and local chiral symmetry

follow from those of Yang-Mills.



1.8 Supersymmetry

We also recover from the dictionary the component supersymmetry
variation of [Sohnius:1981],
0.2 = —4iey, Y,
0, = —ﬁak’\eakgw +15€Vy,
- ’VSGHM - éauu75€Hu7

66 VM = _E’YMUKA"YS@HQ#)\-



1.9 Lorentz multiplet

New minimal supergravity also admits an off-shell Lorentz multiplet
(Quab ™, Yab, —2Vap™) transforming as

§VP = NP 4 NP 4 5, 0 V. (1)

This may also be derived by tensoring the left Yang-Mills superfield V(L)
with the right Yang-Mills field strength F2¥(R) using the dictionary

V2 = VI(L) % &y« F"(R),

N = N(L) % D« F2P (R).



1.10 Bianchi identities

@ The corresponding Riemann and Torsion tensors are given by

R:ypa = 7FILV’.(L) *CD,-,-/ * FPUI'/(R) = R;rrpy'
Tl = —Fuu' (Dx®ixAy" (R) = AL (Lx®i*F,., (R)=-T,,,

@ One can show that (to linearised order) the gravitational Bianchi
identities follow from those of Yang-Mills

/

D[u(L)FVp]I(L) =0= D[#(R)F,,p]’ (R)



1.11 To do

o Convoluting the off-shell Yang-Mills multiplets (4 + 4, N, = 1) and
(34 0,Ng = 0) yields the 12 + 12 new-minimal off-shell V' =1
supergravity.

@ We expect that convoluting the off-shell general multiplet
(8+8,N. =1)and (3+0,Ng =0) yields the 24 + 24 non-minimal
off-shell ' = 1 supergravity [Breitenlohner:1977].

o We expect convoluting (4 + 4, N, = 1) and (4 + 4, Ng = 1) yields
the 32 + 32 minimal off-shell " = 2 supergravity [Fradkin:1979,
deWit:1979, Breitenlohner:1979, Breitenlohner:1980]. The latter
would involve bosons from the product of left and right fermions.

@ Clearly two important improvements would be to generalise our

results to the full non-linear transformation rules and to address the
issue of dynamics as well as symmetries.



2.1 Division algebras

o Mathematicians deal with four kinds of numbers, called Divison

Algebras.
@ The Octonions occupy a privileged position :
Name Symbol Imaginary parts
Reals R 0
Complexes C 1
Quaternions H 3
Octonions (0) 7

Table : Division Algebras



2.2 Lie algebras

@ They provide an intuitive basis for the exceptional Lie algebras:

Classical algebras Rank Dimension
An SU(n+1) n (n+1)2-1
B, 50(2n+1) n n(2n+1)
Cn Sp(2n) n n(2n+1)
D, 50(2n) n n(2n—1)

Exceptional algebras

= 6 78
E; 7 133
Eg 8 248
Fy4 4 52
Go 2 14

Table : Classical and exceptional Lie alebras



2.3 Magic square

@ Freudenthal-Rozenfeld-Tits magic square

@ Despite much effort, however, it is fair to say that the ultimate
physical significance of octonions and the magic square remains an

enigma.

A /Ag | R C H O
R Ag As G R
C A A+ A A E
H G As De E;
0 F., E E E

Table : Magic square



2.4 Octonions

@ Octonion x given by
x = x%qg + x10e; + x%er + x3e3 + x*es + x%es5 + x%es + x7 &7,
One real g = 1 and seven ¢;,i = 1,...,7 imaginary elements, where
ey = e and ef = —e;.

@ The imaginary octonionic multiplication rules are,

eiej = —0; + Cijkex  [ei, €, ex] = 2Qjjurer

Cmnp are the octonionic structure constants, the set of oriented lines
of the Fano plane.

{ijk} = {124,235, 346, 457,561,672, 713}.

@ Qi are the associators the set of oriented quadrangles in the Fano
plane:

ijkl = {3567,4671,5712, 6123, 7234, 1345, 2456},

Qijkl = 7? Cmnpsmnpijk/-



2.5 Fano plane

The Fano plane has seven points and seven lines (the circle counts as a
line) with three points on every line and three lines through every point.

Fano plane




2.6 Gino Fano

Gino Fano (5 January 1871 to 8 November 1952) was an Italian
mathematician. He was born in Mantua and died in Verona.

Fano worked on projective and algebraic geometry; the Fano plane, Fano
fibration, Fano surface, and Fano varieties are named for him.

Ugo Fano and Robert Fano were his sons.




2.8 Cayley-Dickson

@ Octonion
O = 0% + O'e; + 0%e; + O%e3 + O%ey + O%es5 + O%es + 07y
= H(0) + esH(1)
@ Quaternion
H(0) = 0%+0te;+0%e;+0%; H(1) = 03ep—0"e;— 0%+ 0%
H(0) = C(00) + e,C(10) H(1) = C(01) + e, C(11)
o Complex
C(00) = Q% + O'e; C(01) = O%¢y — 07y
C(10) = O%¢y — O%*e; C(11) = —0%¢y — 0%¢;
C(00) = R(000) + e; R(100) C(01) = R(001) + e;R(101)
C(10) = R(010) + e;(110) C(11) = R(011) + ¢ R(111)
@ Real
R(000) = 0° R(100) = O R(001) = O° R(101) = — O
R(010) = 0% R(110) = —0* R(011) = -0° R(111) = =0°



2.7 Division algebras

@ Division: ax+b=0 has a unique solution
@ Associative: a(bc)=(ab)c

o Commutative: ab=ba

A construction  division?  associative? commutative? ordered?
R R yes yes yes yes
C R+ eR yes yes yes no
H C+eC yes yes no no
0 H+ esH yes no no no
S O+ e0 no no no no

@ As we shall see, the mathematical cut-off of division algebras at
octonions corresponds to a physical cutoff at 16 component spinors
in super Yang-Mills.



2.8 Norm-preserving algebras

@ To understand the symmetries of the magic square and its relation
to YM we shall need in particular two algebras defined on A.

o First, the algebra notm(A) that preserves the norm

1,
(xly) =507 +yx) = x?yP8.p

notm(R) =0

notm(C) = s0(2)
notm(IH) = so0(4)
notm(0) = s0(8)



2.9 Triality Algebra

@ Second, the triality algebra tri(A)

tri(A) = {(A, B, C)|A(xy) = B(x)y+xC(y)}, A,B,C €so(n), x,y € A.

[Barton and Sudbery:2003]:



3.1 Yang-Mills spin-off: interesting in its own right

We give a unified description of

D = 3 Yang-Mills with A" =1,2,4,8

D = 4 Yang-Mills with A" = 1,2, 4

D = 6 Yang-Mills with A" = 1,2

D = 10 Yang-Mills with A/ =1

in terms of a pair of division algebras (A,, A,n), n=D —2

We present a master Lagrangian, defined over A ,ar-valued fields,
which encapsulates all cases.

The overall (spacetime plus internal) on-shell symmetries are given
by the corresponding triality algebras.

We use imaginary A ,pr-valued auxiliary fields to close the
non-maximal supersymmetry algebra off-shell. The failure to close
off-shell for maximally supersymmetric theories is attributed directly
to the non-associativity of the octonions.

[arXiv:1309.0546

A. Anastasiou, L. Borsten, M. J. Duff, L. J. Hughes and S. Nagy]



32 D =3,N =8 Yang-Mills

@ The D =3, N' = 8 super YM action is given by
3 1 A CAuv 1 App LA YA A
S= [ dx (=g FAFY = SDuofD ol + N2y DX,
1 - .
Ao O 6P O OF — alac PR )

where the Dirac matrices [, i=1,...,7, a,b=0,...,7, belong
to the SO(7) Clifford algebra.

@ The key observation is that I'\, can be represented by the octonionic
structure constants,

My = i(0bi020 — 0b00ai + Ciab),

which allows us to rewrite the action over octonionic fields



3.3 Transformation rules

@ The supersymmetry transformations in this language are given by

1 1
SA\A = E(FAW +e"P D¢ o e + ngBCAQﬁ?%CUijev
I' _ —
5A;j = E(efyluAA - AA’Y,LLE)v (2)
st = ée;[(Ee,-))\A — M(eie)],

where 0,,,, are the generators of SL(2,R) = SO(1, 2).



4.1 Global symmetries of supergravity in D=3

o MATHEMATICS: Division algebras: R, C,H, O

(DIVISION ALGEBRAS)? = MAGIC SQUARE OF LIE ALGEBRAS
e PHYSICS: N =1,2,4,8 D =3 Yang — Mills

(YANG — MILLS)? = MAGIC SQUARE OF SUPERGRAVITIES
o CONNECTION: N=1,2,48~ R, C,H,0

MATHEMATICS MAGIC SQUARE = PHYSICS MAGIC SQUARE

@ The D =3 G/H grav symmetries are given by ym symmetries
G(grav) = tei ym(L) + tei ym(R) + 3[ym(L) x ym(R)].

€g
Es(s) = SO(8) + SO(8) + 3(0 x 0)

248 = 28 + 28 + (8,,8,) + (8s,85) + (8¢, 8¢)



4.2 Squaring R, C, H, O Yang-Mills in D =3

Taking a left SYM multiplet
{Au(L) e ReA;, (L) eImA;, ML) A}
and tensoring with a right multiplet
{AL(R) € ReAr, ¢(R)€lImAgr, X(R)c€ Ar}

we obtain the field content of a supergravity theory valued in both A;

and Ag:
Ac/An | A,(R) € ReAp #(R) € ImAp, AR) € Ag
Au(L) e ReAL guv + ¢ € ReAL @ ReAR ¢ € ReAL ® ImAr U, +x €ReAL ® Ar
¢(L) e ImAL ¢ € ImAL ® ReAr ¢ €ImAr @ ImAr x € ImAL ® Ar
AL)eAL VU, +x € AL ®ReAr x € AL @ ImAg peAL QAR

Grouping spacetime fields of the same type we find,

A, A ® Ap A ®Ag
8w € R, WMG(AR)’ 9"€<AL®AR)’ XE(AL®AR)



4.3 Grouping together

@ Grouping spacetime fields of the same type we find,

Ay A, ® Ag
guw € R, ‘l’u€<AR>7 w7x€<AL®AR>- (3)

@ Note we have dualised all resulting p-forms, in particular vectors to
scalars. The R-valued graviton and A; @ Ag-valued gravitino carry
no degrees of freedom. The (A, ®AR)2—va|ued scalar and Majorana
spinor each have 2(dim A; x dim Ag) degrees of freedom.

o Fortunately, A; ® Ag and (A, ® Ag)? are precisely the
representation spaces of the vector and (conjugate) spinor. For
example, in the maximal case of A;, Ag = O, we have the 16,128
and 128’ of SO(16).



4.4 Final result

R c H o
N=27f=1 N=37=8 N=5,f=16 N=9,f=32

R| G =SL(2,R), dim3 G =SU(2,1), dim8 G = USp(4,2), dim21 G = Fy(_20), dim52
H =80(2), dim1 H = SU(2) x SO(2), dim 4 H = USp(4) x USp(2), dim 13 H =S0(9), dim 36
N=3f=8 N=4,f=1 N N =10,f =64

¢| ¢ =sU(2,1), dim8 G =8U(2,1)2, dim 16 G=58U G = Bg( 14y, dim 78
H = SU(2) x SO(2), dim4 H =SU(2)? x SO(2)2, dim 8 H = SU( H = S0(10) x SO(2), dim 46
N=5f=1 N=6f=32 N=8/f=64 N~12/~123

H| G =USp(4, 2) dim 21 G =SU(4,2), dim 35 G =50(8,4), dim 66 G = E7(_s), dim 133
H = USp(4) x USp(2), dim13 H = SU(4) x SU(2) x SO(2), dim19 H = SO(8) x SO(4), dim 34 1 = SO(13) x SO(3), dim 69
N=9,f=32 N =10,f =64 N=12,f=128 N =16, f =256

O| G = Fy(_z0), dim52 G = Eg(_14), dim 78 G = E7(_s), dim 133 G = Egs), dim 248
H = SO(9), dim 36 H = SO(10) x SO(2), dim 46 H =S0(12) x SO(3), dim 69 H = S0(16), dim 120

@ The N > 8 supergravities in D = 3 are unique, all fields belonging
to the gravity multiplet, while those with A" < 8 may be coupled to
k additional matter multiplets [Marcus and Schwarz:1983; deWit,
Tollsten and Nicolai:1992]. The real miracle is that tensoring left
and right YM multiplets yields the field content of N =2,3,4,5,6,8
supergravity with k =1,1,2,1,2,4: just the right matter content to
produce the U-duality groups appearing in the magic square.



4.5. Conclusion

@ In both cases the field content is such that the U-dualities exactly
match the groups of of the magic square:

A/Ar| R C H 0
R | SL2.R) SU(2, 1) Usp(4, 2) Faoo)
C SU2,1)  SU(2,1) xSU(2,1)  SU4,2)  Eg_1a)
H USp(4,2) SU(4,2) S0O(8,4) E7(_s)
0 Fa(—20) Eg(—14) Ez(_s) Eg(s)

Table : Magic square

e The G/H U-duality groups are precisely those of the Freudenthal
Magic Square!

G: g3(A1_7 AR) = ’L'Ci(A[_) + fti(AR) + 3(AL X AR).

H: QI(AL; AR) = ttl(AL) + ftl(AR) + (A[_ X AR)



4 5a Projective planes?

@ U-dualities G are realised non-linearly on the scalars, which
parametrise the symmetric spaces G/H.

@ This can be understood using the remarkable identity relating the
projective planes over (A, ® Ag)? to G/H,

(A; ® Ag)P? = G/H.

The scalar fields may be regarded as points in division-algebraic
projective planes [Baez:2001, Freudenthal:1964, Landsberg2001].

@ See also [Atiyah and Berndt:2002].
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4.7 Summary Gravity: Conformal Magic Pyramid

o We also construct a conformal magic pyramid by tensoring
conformal supermultiplets in D = 3, 4, 6.

@ The missing entry in D = 10 is suggestive of an exotic theory with
G/H duality structure F4(4y/Sp(3) x Sp(1).
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5.1 Generalized mirror symmetry: M-theory on X’

@ We consider compactification of (M =1, D = 11) supergravity on a
7-manifold X7 with betti numbers (bo, bl, b2, b3, b3, b2, bl, bo) and
define a generalized mirror symmetry

(b07 b17 b2> b3) — (b07 bla b2 - p/27 b3 + p/2)
under which
p(X7) =T7by —5by +3b, — b3
changes sign
p——p
[Duff and Ferrara:2010]

o Generalized self-mirror theories are defined to be those for which
p=0



5.2 Anomalies

Field f AA 360A 360A X7

SMN gl“’ 2 -3 848 —232 bo
A, 2 0 -52 —52 by
A 1 0 4 4 —by + bs

Pm Yy 2 1 -233 127 by + by
X 2 0 7 7 by + bs

Amvnp Awp O 2 =720 0 bo
An 1 -1 364 4 by
Ay 2 0 —52 —52 b,
A 1 0 4 4 bs

total AA 0

total A —p/24

total A/ —p/24

Table : X7 compactification of D=11 supergravity



5.3 Vanish without a tracel!

@ Remarkably, we find that the anomalous trace depends on p

So the anomaly flips sign under generalized mirror symmetry and
vanishes for generalized self-mirror theories.

o Equally remarkable is that we get the same answer for the total
trace using the numbers of Grisaru et al 1980.



5.4 Squaring Yang-Mills in D = 4 and the self-mirror

condition

@ Tensoring left and right supersymmetric Yang-Mills theories with
field content (A, N x,2(NL — 1)¢) and (A, Nrx,2(Ng — 1)9)
yields an N = N + Ng supergravity theory.

L\ R A, Ngrx 2(Ng — 1)¢
A,u g,u,zl + 2¢ NR('[/J;L + X) 2(NR — l)AH
Nix Ne(u +x)  NNg(Au+2¢)  2N(Nr — 1)x

2(NL — 1)¢ 2(N[_ — l)A# 2(NL — ]-)NRX 4(NL — 1)(NR — 1)¢

Table : Tensoring Np and Ngr super Yang-Mills theories in D = 4. Note
that we have dualized the 2-form coming from the vector-vector slot



5.5 Betti numbers from squaring Yang-Mills

@ The betti numbers may then be read off from the Table and we find
(bo, b1, b2, b3) =

(1, Np+ Ng —1, N Ng + Ny + Ng — 3,3N Ng — 2N — 2Ngr + 3)

Consequently
p(X") =Tbo —5by +3bo — b3 =0
(4)
@ Similar results hold in D =5 where
(co,€1,€2,¢3) = (L, NL+Ng—2, Ny Ng —1,2N  Ng — 2N —2Ng + 4)
Consequently

X(X6):2b0—2cl+2C2—C3:0



