

Neutrino Physics In China

Liangjian Wen

53rd Course: THE FUTURE OF OUR PHYSICS INCLUDING NEW FRONTIERS, Erice, 24 June – 3 July 2015

Neutrino Oscillation studies with reactors

• In a simple 2-v framework

A brief history of reactor neutrino experiments

- Discovery: 50's 60's Reines
- Early search for oscillation: 70's-80's Reines, ILL,
- Atmospheric neutrino oscillation: 90's Palo Verde, Chooz
- Solar neutrino oscillation: 00's KamLAND
- Small θ_{13} : **10's** Daya Bay, Double Chooz, RENO

Reactor v

- Neutrino flux of a commercial reactor with 3 GW_{th} : ~6×10²⁰ v/s
- Distinguishing correlated and uncorrelated errors is important

Reactor \overline{v} **Detection**

Neutrino energy:

Early Experiments

Major sources of uncertainties:

- Reactor related ~2%
- Detector related ~2%
- Background 1~3%

Near-far relative measurement was proposed (Mikaelyan and Sinev, hep-ex/9908047) to reduce the uncertainties from reactor and detector

<u>Reactor Proposals for θ₁₃</u>

Krasnoyarsk, Russia

Braidwood, USA

Diablo Canyon, USA

Angra, Brazil

Double Chooz,

- Daya Bay was proposed in 2003, the start point of Neutrino Program in China.
- 3 of the 8 proposals are constructed.

KASKA,

RENO, Korea Japan

China

Daya Bay Scheme

or

7

<u>The Best Site for θ_{13} </u>

- Powerful reactor complex (Top 5)
- Close to mountains → enough shielding
- Luminosity 5-20 times of DC and RENO
- Featured design → side-by-side calibration (2-4 ADs at each site) → actual relative det. error 0.2% /VN,
- Discovered an unexpectedly large θ_{13} in Mar. 2012.

Huber et al. JHEP 0911:044, 2009

Designs	Luminosity (ton·GW)	Detector Systematics	Overburden (near/far, mwe)	Sensitivity (3y, 90%CL)
Daya Bay	1400	0.38%/√N	250 / 860	~ 0.008
Double Chooz (France)	70	0.6%	120 / 300	~ 0.03
RENO (Korea)	260	0.5%	120 / 450	~ 0.02

The Daya Bay Detectors

- Multiple AD modules at each site to check Uncorr. Syst. Err.
 - Far: 4 modules, near: 2 modules
- Multiple muon detectors to reduce veto eff. uncertainties
 - Water Cherenkov: 2 layers
 - RPC: 4 layers at the top + telescopes

Redundancy !!!

Installation Timeline

Operation History

<u>Global Picture of \theta_{13}</u>

Antineutrino Candidates Selection

- Reject PMT flashers
- Coincidence in energy and time
 - <u>Energy</u>: 0.7 MeV < Ep < 12.0 MeV, 6.0 MeV < Ed < 12.0 MeV
 - <u>Time</u>: 1 μs < Δt_{p-d} < 200 μs
 - <u>Multiplicity cut</u>: only select isolated candidate pairs
- Muon Veto:
 - Water pool muon: reject 0.6 ms
 - <u>AD muon (>20 MeV)</u>: reject 1 ms
 - <u>AD shower muon (>2.5 GeV)</u>: reject 1 s

Backgrounds

Background	Near	Far	Uncertainty	Method	Improvement
Accidentals	1.4%	2.3%	Negligible	Statistically calculated from uncorrelated singles	Extend to larger data set
⁹ Li/ ⁸ He	0.4%	0.4%	~50%	Measured with after-muon events	Extend to larger data set
Fast neutron	0.1%	0.1%	~30%	Measured from RPC+OWS tagged muon events	Model independent measurement
AmC source	0.03%	0.2%	~50%	MC benchmarked with single gamma and strong AmC source	Two sources are taken out in Far site ADs
Alpha-n	0.01%	0.1%	~50%	Calculated from measured radioactivity	Reassess systematics

Take out two AmC sources

Unique feature: Side-by-side comparison

- Relative energy scale: < 0.2% variation in reconstructed energy between ADs
- Improved from 0.35% in 2013 which was between six detectors.
 Neutron from muon spallation Alpha from natural radiu

Calibration source:

Auto Calibration Unit: ⁶⁰Co, ⁶⁸Ge, AmC Spallation: nGd, nH Gamma: ⁴⁰K, ²⁰⁸Tl Alpha: ²¹²Po, ²¹⁴Po, ²¹⁶Po

Unique feature: Side-by-side comparison

EH1

AD1/AD2 (6+8AD data) Expected: 0.982 Measured: 0.981±0.004

This check shows that systematic errors are under control, and will determine the final systematic error

AD3/AD8 (8AD data) Expected: 1.012 Measured: 1.019 \pm 0.004

Time variation of rate deficit

- IBD rate highly correlated with reactor prediction
- Consistent rate deficit as a function of time

Detector energy response model

- Non-linear energy response in Liquid scintillator
 - Quenching, known as Birks' law (particle-, E- dep.)
 - Cerenkov (particle-, E- dep.)
 - Electronics (E- dep, modeled based on MC and signle channel FADC measurement)
- Nominal model: fit to monoenergetic gamma lines and ¹²B beta-decay spectrum
- Cross-validation model: fit to ²⁰⁸Th, ²¹²Bi, ²¹⁴Bi beta-decay spectrum, Michel electron
- Uncertainty <1% above 2MeV

Oscillation analysis

- Far/near relative measurement
- Observed data highly consistent with oscillation interpretation
- Precision of $\sin^2 2\theta_{13}$: **10%** \rightarrow **6%**
- Precision of $\left| \Delta m_{ee}^2 \right|$: 8% \rightarrow 4%

$$\sin^2 2\theta_{13} = 0.084 \pm 0.005$$
$$\left| \Delta m_{ee}^2 \right| = (2.42 \pm 0.11) \times 10^{-3} \,\mathrm{eV}^2$$

Oscillation

Reactor Neutrino Flux measured @ DYB

are normalized to $cm^2/GW/day$ (Y_0) and $cm^2/fission$ (σ_f).

Daya Bay's reactor antineutrino flux measurement is consistent with previous short baseline experiments.

3-AD (near sites) measurement $Y_0 = 1.553 \times 10^{-18}$ $\sigma_f = 5.934 \times 10^{-43}$

Compare to flux model Data/Prediction (Huber+Mueller) 0.947 \pm 0.022 Data/Prediction (ILL+Vogel) 0.992 \pm 0.023

Effective baseline (near sites)

L_{eff} = 573m

Effective fission fractions α_k

²³⁵ U	²³⁸ U	²³⁹ Pu	²⁴¹ Pu	
0.586	0.076	0.288	0.050	

Reactor antineutrino spectrum

- Absolute positron spectral shape is NOT consistent with the prediction. A bump is observed in 4-6 MeV (~4σ discrepancy).
- Extract a generic observable reactor antineutrino spectrum by removing the detector response

<u>Independent θ₁₃ measurement with nH</u>

- Key features: independent statistics, different systematics
- Challenges: high accidental background because of longer capture time and lower delayed energy
- Strategy: raise prompt energy cut (>1.5MeV) and require prompt to delay distance cut (<0.5m)
- Oscillation analysis of rate deficit using 217 days of 6AD data

 $\sin^2 2\theta_{13} = 0.083 \pm 0.018$

• Spectral analysis in progress

Search for light sterile neutrinos

- An unique opportunity for sterile neutrino searches
 - Sterile neutrino would introduce additional oscillation mode
 - Relative measurement at multiple baselines: EH1 (~350m), EH2 (~500m), EH3 (~1600m)
- Oscillation analysis
 - No significant signal observed, consistent with 3-flavor neutrino oscillation.
 - Set most stringent limit at $10^{-3} \text{ eV}^2 < \Delta m_{41}^2 < 0.1 \text{ eV}^2$

Daya Bay Summary

- Daya Bay updated reactor antineutrino analysis with the full detector configuration
 - Most precision measurement of $\sin^2 2\theta_{13}$: 6%
 - Most precision measurement of $|\Delta m_{ee}^2|$ in the electron antineutrino disappearance channel: 4%
- Precision measurement on reactor antineutrino flux and spectrum
 - Flux is consistent with previous short baseline experiments
 - Spectrum is NOT consistent with prediction at 4σ level in 4-6 MeV (5-7 MeV) positron (antineutrino) energy region
- Confirmed reactor antineutrino disappearance and measured $\sin^2 2\theta_{13}$ independently with nH sample
- Set **new limit** to light sterile neutrinos

Projected Future

- Daya Bay will run to **2017**. Measuring $\sin^2 2\theta_{13}$ to ~3% precision, the ٠ best in tens of years.
- Most precise direct measurement of $|\Delta m_{ee}^2|$, better than $|\Delta m_{\mu\mu}^2|$ ٠ from accelerator exp. The most precise reactor neutrino spectrum, and ...

Neutrino Mass Hierarchy

- Large θ_{13} open doors to MH
 - Exploit L/E spectrum with reactors
 - Precision energy spectrum measurement
 - ➢ Look for interference between solar- and atmosphericoscillations → relative measurement

$$P_{ee}(L/E) = 1 - P_{21} - P_{31} - P_{32}$$

$$P_{21} = \cos^4(\theta_{13}) \sin^2(2\theta_{12}) \sin^2(\Delta_{21})$$

$$P_{31} = \cos^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{31})$$

$$P_{32} = \sin^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{32})$$

S.T. Petcov et al., PLB533(2002)94
S.Choubey et al., PRD68(2003)113006
J. Learned et al., PRD78, 071302 (2008)
L. Zhan, Y. Wang, J. Cao, L. Wen, PRD78:111103, 2008, PRD79:073007, 2009
J. Learned et al., arXiv:0810.2580

Independent on CP phase and θ_{23} (Acc. & Atm. do) Energy Resolution is the key

JUNO Experiment

JUNO

- Jiangmen Underground Neutrino Observatory
- Primary goals: mass hierarchy and precision meas.
- > 20 kton LS detector, $3\%/\sqrt{E}$ energy resolution Proposed in 2008, approved in Feb.2013

Rich Physics

- Mass hierarchy
- Precision measurement
 - of mixing parameters
- Supernova neutrinos
- Geo-neutrinos
- Solar neutrinos
- Sterile neutrinos
- Atmospheric neutrinos
- Exotic searches

Sensitivity on MH

(b) Take into account multiple reactor cores, uncertainties from energy non-linearity, etc

-				
0.00	0.01	0.02	0.03	0.0

	Ideal	Core distr.	Shape	B/S (stat.)	B/S (shape)	$ \Delta m^2_{\mu\mu} $
Size	$52.5\mathrm{km}$	Real	1%	4.5%	0.3%	1%
$\Delta\chi^2_{ m MH}$	+16	-4	-1	-0.5	-0.1	+8

Precision Measurement

Supernova neutrinos

- <20 events observed so far
- Typical galactic SN assumptions:
 - 10 kpc galactic distance (our Galaxy center)
 - $3 \times 10^{53} \text{ erg}$
 - L_v the same for all types

Supernova neutrinos in Giant LS detector

Giant LS detector →

Measure energy spectra & fluxes of almost all types of neutrinos

e.G Estimated numbers of neutrino events in JUNO (preliminary)

Typical galactic SN assumptions:

10 kpc galactic distance, 3×10^{53} erg, L_v the same for all types

Channel	Tuno	Events for different $\langle E_{\nu} \rangle$ values				
Onamiei	Type	$12 { m MeV}$	$14 \mathrm{MeV}$	$16 { m MeV}$		
$\overline{\nu}_e + p \to e^+ + n$	$\mathbf{C}\mathbf{C}$	4.3×10^3	$5.0 imes 10^3$	5.7×10^3		
$\nu + p \rightarrow \nu + p$	NC	$6.0 imes10^2$	$1.2 imes 10^3$	$2.0 imes 10^3$		
$\nu + e \rightarrow \nu + e$	NC	$3.6 imes10^2$	$3.6 imes10^2$	$3.6 imes10^2$		
$\nu + {}^{12}\mathrm{C} \rightarrow \nu + {}^{12}\mathrm{C}^*$	NC	$1.7 imes 10^2$	$3.2 imes10^2$	$5.2 imes10^2$		
$\nu_e + {}^{12}\mathrm{C} \rightarrow e^- + {}^{12}\mathrm{N}$	\mathbf{CC}	$4.7 imes 10^1$	$9.4 imes10^1$	$1.6 imes 10^2$		
$\overline{\nu}_e + {}^{12}\mathrm{C} \rightarrow e^+ + {}^{12}\mathrm{B}$	\mathbf{CC}	$6.0 imes 10^1$	$1.1 imes 10^2$	$1.6 imes 10^2$		

Correlated events. Better detection in LS than in Water

- v mass: < 0.83±0.24 eV at 95% CL (arXiv:1412.7418)
- Locating the SN: ~9°

Diffuse Supernova Neutrino

• DSNB: Past core-collapse events

- Cosmic star-formation rate
- Core-collapse neutrino spectrum
- Rate of failed SNe

Item		Rate (no PSD)	PSD efficiency	Rate (PSD)
Signal	$\langle E_{\bar{\nu}_e} \rangle = 12 \mathrm{MeV}$	12.2	$\varepsilon_{\nu} = 50 \%$	6.1
	$\langle E_{\bar{\nu}_e} \rangle = 15 \text{MeV}$	25.4		12.7
	$\langle E_{\bar{\nu}_e} \rangle = 18 \text{MeV}$	42.4		21.2
	$\langle E_{\bar{\nu}_e} \rangle = 21 \text{MeV}$	61.2		30.8
Background	reactor $\bar{\nu}_e$	1.6	$\varepsilon_{\nu} = 50 \%$	0.8
	atm. CC	1.5	$\varepsilon_{\nu} = 50 \%$	0.8
	atm. NC	716	$\varepsilon_{\rm NC} = 1.1 \%$	7.5
	fast neutrons	12	$arepsilon_{ m FN}=1.3\%$	0.15
	Σ			9.2

10 Years' sensitivity

Syst	. uncertainty BG	5	5%	20%		
	$\langle E_{\bar{\nu}_{e}} \rangle$	rate only	spectral fit	rate only	spectral fit	
	$12 \mathrm{MeV}$	1.7σ	1.9σ	1.5σ	1.7σ	
	$15{ m MeV}$	3.3σ	3.5σ	3.0σ	3.2σ	
	$18{ m MeV}$	5.1σ	5.4σ	4.6σ	4.7σ	
	$21{ m MeV}$	6.9σ	7.3σ	6.2σ	6.4σ	

Mass Hierarchy from Atmospheric

- Due to matter effect, oscillation probability of atmospheric muon neutrino when passing the Earth depends on mass hierarchy
- JUNO will have 1-2 σ sensitivity
 - Measure both lepton and hadron energy
 - Good tracking and energy resolution

<u>Geo-neutrinos</u>

• Current results

KamLAND: 30±7 TNU (*PRD 88 (2013) 033001*) Borexino: 38.8±12.2 TNU (*PLB 722 (2013) 295*) Statistics dominant

- Desire to reach an error of 3 TNU
- JUNO: ×20 statistics
 - Huge reactor neutrino backgrounds
 - Need accurate reactor spectra

Source	Events/year
Geoneutrinos	408 ± 60
U chain	311 ± 55
Th chain	92 ± 37
Reactors	16100 ± 900
Fast neutrons	3.65 ± 3.65
⁹ Li - ⁸ He	657 ± 130
${}^{13}C(\alpha, n){}^{16}O$	18.2 ± 9.1
Accidental coincidences	401 ± 4

Combined shape fit of geo- ν and reactor- ν

	Best fit	1 y	3 y	5 y	10 y
U+Th fix ratio	0.96	17%	10%	8%	6%
U (free)	1.03	32%	19%	15%	11%
Th (free)	0.80	66%	37%	30%	21%

Solar and other Physics

 Solar neutrino Metallicity? Vacuum oscillation to MSW? ⁷Be and ⁸B at JUNO Threshold Backgrounds 							Source ^{pp} ⁷ Be [line 0.384 Me ⁷ Be [line 0.862 Me ⁸ B ¹³ N ¹⁵ O	EV] 1 eV] 4 eV] 4 2 4 2 2	Rate [cpd/1kt] .337 .9 .75 .8 .5 .5 .5 .25 .28
Liquid Scintillator	²³⁸ U	²³² Th	K40	Pb210 (Rn222)	Ref.		¹⁷ F	0).7
No Distillation	10 ⁻¹⁵	10 ⁻¹⁵	10 ⁻¹⁶	1.4·10 ⁻²²	Borexino CTF,	E9500	$\begin{bmatrix} - & - & - \\ - & - & - \\ - & - & - \\ - & - &$	t 1	
After Distillation	10 ⁻¹⁷	10 ⁻¹⁷	10 ⁻¹⁸	10 ⁻²⁴	Kamland	2000	MeV threshold		
 Sterile v, Indirect dark matter, Nucleon decay, etc. 						1000 500 0			5 σ rejection of dark noise

Challenge: high-precision, giant LS detector

Important factors

> High transparency Liquid

Scintillator

High QE PMT

Energy scale uncertainty

	KamLAND	JUNO
LS mass	~1 kt	20 kt
Energy Resolution	6%/√ <u>E</u>	~3%/√ <u>E</u>
Light yield	250 p.e./MeV	1200 p.e./MeV

Requirements on Energy Resolution

- $3\%/\sqrt{E}$ energy resolution
- Take JUNO MC as example
 - Based on DYB MC
 - JUNO Geometry
 - 77% photocathode coverage (KamLAND: ~34%)
 - − High QE PMT, QE_{max}: 25% \rightarrow 35%
 - LS attenuation length (1 m-tube measurement @ 430nm)

from 15 m

= absorption 30 m + Rayleigh scattering 30 m to 20 m

= absorption 60 m + Rayleigh scattering 30 m

The Highlighted parameters are input to MC

Beyond Photo-statistics

$$\frac{\sigma_E}{E} = \sqrt{\left(\frac{a}{\sqrt{E}}\right)^2 + b^2 + \left(\frac{c}{E}\right)^2}$$

Impact to MH sensitivity

$$\simeq \sqrt{\left(\frac{a}{\sqrt{E}}\right)^2 + \left(\frac{1.6 \ b}{\sqrt{E}}\right)^2 + \left(\frac{c}{1.6 \ \sqrt{E}}\right)^2}$$

Contributions to energy resolution from naked gammas

<u>12</u> 12

- Generic form of E resolution
 - a: stochastic term
 - b: constant term
 - c: noise term
- Data validated Full MC (DYB&DC)
- Noise term dominated by PMT dark noise
- Constant term
 - Residual non-uniformity
 - Flaws in readout electronics
 - Artifacts from resolution plotting
- No JUNO show stopper found in DYB model

Liquid Scintillator in JUNO

• Current choice:

LAB+PPO+bisMSB (no Gd-loading)

- Increase light yield
 - Optimization of fluors concentration
- Increase transparency
 - Good raw solvent LAB
 - Improve production processes: cutting of components, using Dodecane instead of MO, improving catalyst, etc
 - Online handling/purification
 - Distillation, Filtration, Water extraction, Nitrogen stripping, ...
- Reduce radioactivity
 - Less risk, since no Gd
 - Singles<3Hz (above 0.7MeV), if
 ⁴⁰K/U/Th <10⁻¹⁵ g/g (preliminary)

Linear Alky Benzene (LAB)	Atte. Length @ 430 nm			
RAW (specially made)	14.2 m			
Vacuum distillation	19.5 m			
SiO ₂ coloum	18.6 m			
Al ₂ O ₃ coloum	25 m			

High QE PMT Effort in JUNO

- High QE 20" PMTs under development:
 - A new design using MCP: 4π collection
- **MCP-PMT development:**
 - **Technical issues mostly resolved**

MCP-PMT-56# SPE@2000V

PN + 3 HOURS lais - it stations

380 400 420

Single photo-electron spectrum

- Successful 8" prototypes
- A few 20" prototypes
- **Alternative options:** • Hamamatsu or Photonics

2mV-thresho 3mV-thenhold 4mV-threshold 24.62 Time After Closing the Dark Box (Hour) Charge/05/C LSR The dark count

The Photocathode Uniformity

	HV Gain		QE@410nm	P/V	Rise Time	Fall Time	Dark rate @1E7 (0.25PE)	
20"-51#	2000V	~1E7	22%	~3	~1.2ns	~15ns	~50kHz	

The 20 inch Prototypes

Absolute Energy scale

- Energy non-linearity correction is crucial to spectrum shape analysis
- If imperfect correction, particular residual non-linearity shape can fake the oscillation pattern with a wrong MH (X.Qian et al, PRD 87, 033005 (2013))
 → Challenge: understand energy scale better than 1%
- Self-calibration of the spectrum: multiple oscillation peaks can provide good constraints to nonlinearity → possibly mitigate the requirement to be <2%

JUNO Central Detector

Target: 20 kt LS v_e signal event rate: ~60/day

Acrylic Sphere option: acrylic tank(D~35m) + SS structure

Balloon option: SS tank(D~38m) + acrylic structure + balloon

- Issues:
 - Engineering: mechanics, safety, lifetime, ...
 - Physics: cleanness, light collection, ...
 - Assembly & installation
- Design & prototyping underway

Veto Detectors

- Cosmic muon flux
 - Overburden : ~700 m
 - Muon rate : 0.0031 Hz/m²
 - Average energy : 214 GeV
- Water Cherenkov Detector
 - At least 2 m water shielding
 - ~1500 20"PMTs
 - 20~30 kton pure water
 - Similar technology as Daya Bay (99.8% efficiency)
- Top muon tracker
 - Muon track for cosmogenic bkg rejection
 - Decommissioned OPERA plastic scintillator
 - Possibly w/ RPC

Muon multiplicity at JUNO

Multiplicity	1	2	3	4	5	6
Fraction	89.6%	7.7%	1.8%	0.6%	0.3%	0.07%

Project Plan and Progresses

Other Experiments/Proposals For MH

JUNO: Competitive in schedule and Complementary in physics

- Has chance to be the first to determine MH
- Precise Δm_{31}^2 , θ_{12} , Δm_{21}^2 , Geo-, solar, supernovae, ..., neutrinos

Measurement of CP

e.g at

L=1500km

$$\begin{split} & V_{\mu} - V_{e} \text{ oscillations in a 3 v scheme} \\ & p(v_{\mu} - v_{e}) = 4c_{13}^{2}s_{13}^{2}s_{23}^{2}\sin^{2}\frac{\Delta m_{13}^{2}L}{4E} \times \left[1 \pm \frac{2a}{\Delta m_{13}^{2}}(1 - 2s_{13}^{2})\right] \qquad \theta_{13} \text{ driven} \\ & + 8c_{13}^{2}s_{12}s_{13}s_{23}(c_{12}c_{23}cos\delta - s_{12}s_{13}s_{23})\cos\frac{\Delta m_{23}^{2}L}{4E}\sin\frac{\Delta m_{13}^{2}L}{4E}\sin\frac{\Delta m_{12}^{2}L}{4E}\text{ CPeven} \\ & \mp 8c_{13}^{2}c_{12}c_{23}s_{12}s_{13}s_{23}\sin\delta\sin\frac{\Delta m_{23}^{2}L}{4E}\sin\frac{\Delta m_{13}^{2}L}{4E}\sin\frac{\Delta m_{12}^{2}L}{4E} \text{ CPodd} \\ & + 4s_{12}^{2}c_{13}^{2}\{c_{13}^{2}c_{23}^{2} + s_{12}^{2}s_{23}^{2}s_{13}^{2} - 2c_{12}c_{23}s_{12}s_{23}s_{13}\cos\delta\}\sin\frac{\Delta m_{12}^{2}L}{4E} \text{ solar driven} \\ & \mp 8c_{12}^{2}s_{13}^{2}s_{23}^{2}\cos\frac{\Delta m_{23}^{2}L}{4E}\sin\frac{\Delta m_{13}^{2}L}{4E}\frac{aL}{4E}(1 - 2s_{13}^{2}) \text{ matter effect (CP odd)} \end{split}$$

Qualitatively...

- θ_{13} controls the amplitude
- CP is a low energy effect
- MH is determined in the high energy part

Methods

- > Compare $v_{\mu} \rightarrow v_{e}$ and $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$ (CP violation)
- > Measure $v_{\mu} \rightarrow v_{e}$ appearance (absolute measurement)
- > Compare v_{μ} → v_{e} and v_{e} → v_{μ} (T violation)

How low is the best for CP?

- Below in-elastic threshold: ~ 300 MeV → baseline = 150 km
 Such a threshold is similar for CC/NC & v/vbar
- Although we loose statistics due to the lower cross section, but we have less systematics by being π^0 free

MOMENT: Muon-decay medium-baseline

neutrino beam facility

- Neutrinos from muon decay
- Proton LINAC for ADS ~15 MW
- Energy: 300 MeV/150 km

Neutrinos after the target/collection/decay: ~ 10²¹ v/year

Beam and Detector

 $\mu \operatorname{decay}_{\mu^{+} \to e^{+} + v_{e} + v_{\mu}}$ $\mu^{-} \to e^{-} + \overline{v}_{e} + v_{\mu}$

• Requirement to the detector

- Flavor sensitive (e/µ identification):
 water Cherenkov detector; liquid
 Argon; liquid scintillator (challenge)
- Charge sensitive (Neutrino/antineutrino identification): magnetized detector, liquid scintillator or Gddoped water for IBD
- NC/CC sensitive (NC background rejection): negligible at low energies

Another option with MOMENT

Muon decay-at-rest (DAR)

- High efficiency of neutrino production: no focusing, decay pipe, charge separation ...
- No v_{μ} CC contamination
- Lower energy, shorter baseline -> lower matter effect
- Known spectrum

Figure: DAR neutrino fluxes in arbitrary units.

Concept of DAEδALUS, PRL 104, 141802 (2010)

How Serious Are We on MOMENT?

- Design study by a team of ~10. A new idea worthy to study.
- Progress of ADS proton LINAC? Will China build CEPC?
- What's the physics, after DUNE and Hyper-K?
- If there is physics, will a <u>neutrino factory</u> be built?
- The same team also collaborate in LBNF (Targetry & decay beam window) and is in close contact with NuFact and ESSnu.

- **Daya Bay** is the best site for θ_{13} measurement. It is the start point of neutrino program in China (2003).
- **JUNO** has a rich and very attractive physics program. It will take data in 2020. As a reactor experiment, it is complementary to T2K, NOvA, LBNE, Hyper-K, PINGU, INO, etc.
- Design study for **MOMENT**. Will consider it in a world-wide picture.
- Due to lack of manpower, China has only a little involvement in other neutrino programs (LBNF, EXO)

Thanks!